Clustering methods for big data analytics techniques, toolboxes and applications
Olfa Nasraoui, Chiheb-Eddine Ben N'Cir, editors (Springer Nature, 2019)
|
This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. |
Clustering Methods for Big Data Analytics.pdf :: Unduh
|
No. Panggil : | e20507207 |
Entri tambahan-Nama orang : | |
Subjek : | |
Penerbitan : | Switzerland: Springer Nature, 2019 |
Sumber Pengatalogan: | LibUI eng rda |
Tipe Konten: | text |
Tipe Media: | computer |
Tipe Pembawa: | online resource |
Deskripsi Fisik: | ix, 187 pages : illustration |
Tautan: | |
Lembaga Pemilik: | |
Lokasi: |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
e20507207 | 02-20-286961937 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20507207 |