Saat ini tidak ada keraguan bagi siswa-siswi sekolah menengah untuk melanjutkan pendidikannya ke jenjang universitas. Namun, transisi dari sekolah menengah ke pendidikan tinggi adalah tantangan besar bagi mahasiswa tahun pertama. Kinerja mahasiswa pada tahun pertama cenderung menentukan kinerja mahasiswa tersebut di tahun-tahun akademik berikutnya. Penting untuk mencari karakteristik-karakteristik mahasiswa berdasarkan kinerjanya pada awal tahun semester akademik, sehingga dapat dilakukan pendeteksian awal untuk mencegah penurunan kinerja dan meningkatkan prestasi akademik mahasiswa. Penelitian ini bertujuan untuk mengelompokkan 140 mahasiswa semester pertama. Fitur-fitur diseleksi menggunakan Chi-Square lalu digunakan Fuzzy C-Means clustering untuk mengelompokkan mahasiswa. Dari hasil simulasi, mahasiswa dikelompokkan ke dalam dua cluster dengan kinerja cluster kedua lebih baik dibanding kinerja cluster pertama.
Currently there is no doubt for high school students to continue their education at the university level. However, the transition from high school to university is a major challenge for the first-year students. Moreover, student performance during the first year tends to determine their performance in the following academic years. It is important to find student's characteristics based on their performance at the beginning of the academic semester so that early detection can be done to prevent performance degradation and increase student academic achievement. This study aims to cluster 140 first year students. Features are selected using the Chi-Square feature selection method and then using Fuzzy C-Means clustering to group the students. From simulation result, students are grouped into two clusters with the second cluster's performance is better than the first cluster's performance. |