Full Description
Cataloguing Source | LibUI ind rda |
Content Type | text (rdacontent) |
Media Type | computer (rdamedia) |
Carrier Type | online resource (rdacarrier) |
Physical Description | xiv, 63 pages : illustration ; appendix. |
Concise Text | |
Holding Institution | Universitas Indonesia. |
Location | Perpustakaan UI, Lantai 3 |
- Availability
- Digital Files: 1
- Review
- Cover
- Abstract
Call Number | Barcode Number | Availability |
---|---|---|
T-Pdf | 15-21-350093160 | TERSEDIA |
No review available for this collection: 20513029 |
Abstract
Metal organic framework (MOF) La-PTC berbasis ligan perylene dan logam lantanum disintesis menggunakan metode solvotermal pada suhu 170 °C selama waktu reaksi 24 jam dengan menggunakan pelarut campuran air dan DMF sebanyak 30 mL dengan perbandingan 5:1. MOF La-PTC memiliki karakteristik yang berbeda degan senyawa prekursornya Na4PTC. La-PTC yaitu memiliki nilai energi celah pita 2,25 eV, luas area permukaan 22,2364 m2/g, total volume pori sebesar 0,0685 cm3/g dan ukuran pori 12,3291 nm. Hasil analisis SEM-EDS La-PTC memiliki kandungan atom karbon sebesar 51,8%; oksigen sebesar 28,3% dan lantanum sebesar 19,9%. MOF La-PTC juga memiliki stabilitas termal hingga temperatur 376,27 °C. MOF La-PTC memiliki daya adsorpsi sebesar 22,72%, and 29.70% selama waktu diseprsi 60 menit. MOF La-PTC memiliki aktivitas fotokatalitik terhadap degradasi metil jingga dengan persen efisiensi degradasi sebesar 64,76%, tetapi tidak untuk metilen biru. Penambahan H2O2 meningkatkan aktivitas fotokatalitik MOF La-PTC terhadap degradasi metil orange menjadi 99,60% dan metilen biru menjadi 67,02% dengan waktu penyinaran sinar tampak selama 240 menit. MOF La-PTC dapat digunakan untuk mendegradasi metil jingga sebanyak tiga kali siklus reaksi dengan persen efisiensi degradasi sebesar 62,57% dan metilen biru sebanyak 4 siklus reaksi dengan persen efisiensi degradasi sebesar 77,61% dengan adanya H2O2 dalam sistem.
Metal organic framework of lanthanum and perylene ligand was successfully synthesized by solvothermal method. Therefore this study aims to assess the photocatalytic activity of La-PTC metal organic framework, in degradation of methylene blue and methyl under visible light irradiation. The results of the FTIR characterization showed that, MOF La-PTC had a different structure and composition from its precursor (Na4PTC). The MOF La-PTC has a band gap energy value of 2.25 eV and a surface area of 22.2364 m2/g. The SEM-EDS analysis showed an elemental composition of lanthanum, carbon, and oxygen, as 19.9%, 51.8%, and 28.3%, respectively. LMOF La-PTC had good thermal stability up to 376.27 °C. Furthermore, MOF La-PTC was able to adsorb dyes at the optimum degradation efficiency of 22.72%, and 29.70% for MB and MO at the dispersion period of 60 minutes. MOF La- PTC has photo-catalytic activity towards the degradation of methyl orange with the degradation efficienty of 64.26%, in contrast to methylene blue, which do not have this potential under visible light irradiation. The addition of H2O2 to the mixture, caused the increasing of La-PTC photo-catalytic activity from 64.76% to 99.60% for MO and 8.44% to 67.02% for MB. MOF La-PTC degrade methylene blue for four cycles reaction with percent degradation efficiency of 77.61% and three cycles reaction for methyl orange with percent degradation efficiency of 62.57%. Therefore, MOF La-PTC possess the potential of a photo-catalyst material in degrading dyes, under visible light irradiation.
Metal organic framework of lanthanum and perylene ligand was successfully synthesized by solvothermal method. Therefore this study aims to assess the photocatalytic activity of La-PTC metal organic framework, in degradation of methylene blue and methyl under visible light irradiation. The results of the FTIR characterization showed that, MOF La-PTC had a different structure and composition from its precursor (Na4PTC). The MOF La-PTC has a band gap energy value of 2.25 eV and a surface area of 22.2364 m2/g. The SEM-EDS analysis showed an elemental composition of lanthanum, carbon, and oxygen, as 19.9%, 51.8%, and 28.3%, respectively. LMOF La-PTC had good thermal stability up to 376.27 °C. Furthermore, MOF La-PTC was able to adsorb dyes at the optimum degradation efficiency of 22.72%, and 29.70% for MB and MO at the dispersion period of 60 minutes. MOF La- PTC has photo-catalytic activity towards the degradation of methyl orange with the degradation efficienty of 64.26%, in contrast to methylene blue, which do not have this potential under visible light irradiation. The addition of H2O2 to the mixture, caused the increasing of La-PTC photo-catalytic activity from 64.76% to 99.60% for MO and 8.44% to 67.02% for MB. MOF La-PTC degrade methylene blue for four cycles reaction with percent degradation efficiency of 77.61% and three cycles reaction for methyl orange with percent degradation efficiency of 62.57%. Therefore, MOF La-PTC possess the potential of a photo-catalyst material in degrading dyes, under visible light irradiation.