Setiap hari masyarakat dihadapkan pada risiko kehilangan, kegagalan, bahkan kematian akibat kecelakaan lalu lintas. Cara mengatasi ketidakpastian dan mengendalikan risiko kecelakaan lalu lintas jalan adalah dengan mengalihkan risiko tersebut kepada pihak atau perusahaan lain yang disebut asuransi. Memperkirakan kerugian agregat penting bagi perusahaan asuransi untuk memprediksi kewajiban dan mengukur tingkat kecukupan dana perusahaan. Kerugian agregat pada asuransi kecelakaan lalu lintas dapat dihitung berdasarkan dua variabel, severity klaim dan frekuensi klaim. Severity klaim dan frekuensi klaim memiliki jenis distribusi yang berbeda dan terkadang memiliki hubungan yang saling mempengaruhi, sehingga tidak mudah untuk memodelkannya. Salah satu metode analisis statistik yang digunakan untuk menggabungkan dua distribusi data berbeda yang saling berkaitan adalah metode copula. Melalui studi kasus pada perusahaan asuransi PT XYZ, kerugian agregat akan dihitung dengan menggunakan model berbasis copula. Penentuan model terbaik dan akurasi model ditentukan berdasarkan Akaike Information Criterion (AIC), Root Mean Square Error (RMSE) terkecil, dan uji Vuong. Berdasarkan hasil analisis yang diperoleh bahwa model copula Clayton merupakan model terbaik untuk memperkirakan kerugian agregat pada perusahaan asuransi PT XYZ dimasa yang akan datang. Every day people are faced with the risk of loss, failure, and even death due to traffic accidents. The way to overcome uncertainty and control the risk of road traffic accident is by transferring the risk to another party or company called insurance. Estimating aggregate losses is important for insurance companies to predict liabilities and measure the level of adequacy of company funds. Aggregate losses on traffic accident insurance can be calculated based on two variables, claim severity and claim frequency. Claim severity and claim frequency have different types of distribution and sometimes have relationships that affect each other, so it's not easy to model it. One of the statistical analysis methods used to combine two different data distributions that are related is the copula method. Through a case study on the insurance company PT XYZ, aggregate losses will be calculated using a copula based model. The best model is determined based on the smallest value of Akaike Information Criterion (AIC) and Root Mean Square Error (RMSE) and also by Vuong test. Based on the analysis, explain that Clayton copula is the best model to estimate aggregate losses at the insurance company PT XYZ in the future. |