:: UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Pengembangan Metode Efficient Neural Network (ENET) untuk Segmentasi Semantik pada Video Tangkapan UAV = Development of Efficient Neural Network (ENET) Method for Semantic Segmentation in UAV Capture Video

Naili Suri Intizhami; Wisnu Jatmiko, supervisor; Aniati Murni Arymurthy, examiner; Laksmita Rahadianti, examiner; Evi Yulianti, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2019)

 Abstrak

Pemantauan banjir dapat dilakukan dengan menggunakan Unmanned Aerial Vehicle (UAV) atau lebih dikenal dengan drone. Hasil pemantauan drone yang berupa video atau gambar kemudian akan dianalisa untuk memperoleh informasi. Salah satu metode yang dapat digunakan untuk melakukan analisa data citra adalah segmentasi semantik. Penelitian segmentasi semantik pada data video tangkapan UAV masih jarang dilakukan karena kurangnya dataset yang tersedia secara publik. Berbagai metode untuk segmentasi semantik antara lain menggunakan metode machine learning seperti Conditional Random Field (CRF) dan deep learning seperti Convolutional Neural Network (CNN). Namun, metode yang digunakan untuk segmentasi semantik masih memberikan hasil yang kurang optimal. Hal ini yang menjadi dasar kenapa penelitian ini dilakukan. Pada penelitian ini akan dilakukan pengembangan metode ENet, salah satu CNN yang berfokus untuk segmentasi semantik. Data yang akan digunakan adalah video banjir yang diambil oleh UAV. Pengembangan yang akan dilakukan akan berfokus pada menerapkan tipe konvolusi berbeda pada metode yang digunakan. Selain keakuratan segmentasi, penelitian ini juga akan berfokus untuk mengembangkan metode ENet yang dapat melakukan segmentasi semantik secara cepat, sehingga dapat diimplementasikan pada video tangkapan UAV. Metode yang diusulkan pada penelitian ini berhasil mendapatkan hasil akurasi hingga 93% dengan jumlah parameter yang lebih sedikit daripada metode pembanding.

Flood monitoring can be done using an Unmanned Aerial Vehicle (UAV) or better known as a drone. The results of drone monitoring in the form of videos or images will then be analyzed to obtain information. One method that can be used to analyze image data is semantic segmentation. Semantic segmentation research on UAV capture video data is still rarely conducted due to the lack of publicly available datasets. Various methods for semantic segmentation include using machine learning methods such as Conditional Random Field (CRF) and deep learning such as Convolutional Neural Network (CNN). However, the method used for semantic segmentation still gives less than optimal results. This is the basis for why this research was conducted. In this research, the ENet method will be developed, one of the CNNs that focuses on semantic segmentation. The data to be used is the flood video taken by the UAV. The development that will be carried out will focus on applying different types of convolution to the methods used. In addition to the accuracy of segmentation, this research will also focus on developing the ENet method that can do semantic segmentation quickly, so that it can be implemented on UAV capture videos. The method proposed in this study was successful in obtaining an accuracy of up to 95% with a smaller number of parameters than the comparison method.

 File Digital: 1

Shelf
 T-Naili Suri Intizhami.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 55 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
T-pdf 14-22-11717393 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20515976