:: UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Deteksi Gaya Berjalan Melalui Klasifikasi Sinyal Elektromiografi (EMG) Pada Otot Bahu Dan Kaki = Gait Event Detection using Classification on Electromyography (EMG) Signals from Shoulder and Lower Limb Muscles

Ardy Candra Sutandi; Siti Fauziyah, supervisor; Basari, examiner; Mia Rizkinia, examiner; Abdul Halim, examiner (Fakultas Teknik Universitas Indonesia, 2021)

 Abstrak

Sistem kendali merupakan hal penting di dalam perancangan sebuah alat bantu berjalan untuk pasien pasca stroke yang mengalami hemiparetik pada kakinya. Sistem kendali yang baik harus mampu mengetahui keinginan bergerak atau berjalan dari manusia dan menerjemahkan keinginan tersebut menjadi sebuah gerakan yang alami melalui alat bantu berjalan yang umumnya digerakkan oleh sebuah perangkat DC motor. Sudah banyak penelitian yang telah dilakukan untuk melakukan deteksi terhadap keinginan manusia untuk bergerak atau berjalan melalui berbagai macam sensor yang dipasang pada otot-otot yang terkait. Fokus dalam penelitian ini adalah melakukan deteksi gaya berjalan melalui sinyal elektromiografi yang diperoleh dengan menggunakan sensor-sensor EMG yang dipasangkan pada permukaan 12 otot yang sangat berkaitan dengan gerakan atau gaya berjalan pada manusia. Adapun 12 otot ini terdiri dari 2 otot bahu yaitu Deltoid Anterior (DA) dan Deltoid Posterior (DP), dan 10 otot kaki yang terdiri dari Rectus Femoris (RF), Biceps Femoris (BF), Vastus Medialis (VM), Vastus Lateralis (VL), Tibialis Anterior (TA), Medial Gastrocnemius (MG), Soleus (S), Gluteus Maximus (GMax), Semitendinosus (ST), dan Peroneus Longus (PL). Sinyal elektromiografi dari 12 otot tersebut direkam dari 2 pasien sehat yang tidak mengalami gangguan berjalan, terdiri dari 1 orang pria dan 1 orang wanita. Sinyal tersebut kemudian diproses melalui aplikasi Matlab untuk dilakukan proses klasifikasi dengan menggunakan teknik Artificial Neural Network (ANN). Di samping itu, metode machine learning juga dilakukan yaitu dengan teknik Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) dan K-Nearest Neighbor (KNN), yang bertujuan untuk mendapatkan perbandingan berbagai teknik tersebut agar didapatkan hasil dengan tingkat akurasi terbaik di dalam melakukan deteksi gaya berjalan yang dibedakan menjadi 3 yaitu: berjalan normal, naik tangga dan turun tangga. Hasil terbaik yang diperoleh dari penelitian ini dengan menggunakan algoritma ANN yang mampu menghasilkan prediksi sempurna dengan tingkat akurasi 100%, kemudian tingkat akurasi terbaik yang diperoleh dengan metode machine learning masing-masing untuk algoritma SVM adalah sebesar 99.2%, algoritma KNN sebesar 98.8% dan algoritma LDA sebesar 97.2% yang semuanaya diperoleh dari dataset kombinasi sinyal EMG otot bahu dan kaki. Hasil ini sangatlah penting di dalam penelitian yang akan dilakukan di kemudian hari dalam merancang sebuah sistem kendali yang mampu mengenali keinginan bergerak atau berjalan manusia baik saat berjalan normal maupun ketika hendak naik atau turun tangga sehingga alat bantu berjalan yang dihasilkan dapat digunakan dengan nyaman dan aman oleh pemakainya.

Control strategy is a fundamental role and very important part to create a walking assistive device for patients after stroke with a hemiparetic leg. A good control strategy must have the ability to predict the human motion or walking intention and naturally deliver force by the walking assistive device thereafter. This force is usually generated by the electric actuator using direct-drive motor. Recently, many studies have addressed and put more interest in predicting the human motion intention through various sensors which put on the surface of related skeletal muscles. This study focuses on gait event detection using electromyography signals from 12 muscles comprise of 2 shoulder muscles those are Deltoid Anterior (DA) and Deltoid Posterior (DP) and 10 lower limb muscles those are Rectus Femoris (RF), Biceps Femoris (BF), Vastus Medialis (VM), Vastus Lateralis (VL), Tibialis Anterior (TA), Medial Gastrocnemius (MG), Soleus (S), Gluteus Maximus (GMax), Semitendinosus (ST), and Peroneus Longus (PL). The EMG signals are recorded unilaterally using surface EMG sensor from 2 healthy subjects without walking disorder, consist of 1 male and 1 female. The signals are processed on Matlab platform subsequently for classification process using Artificial Neural Network (ANN) technique. Besides, the machine learning methods are also used in this research i.e. Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN). The purpose of using several methods is to output the comparison with highest accuracy result in predicting the gait events which are divided into 3 types: normal walking, stair ascent, and stair descent. The best outcome along this research is generated from ANN algorithm which could steadily predict without any error with accuracy rate 100%. Furthermore, the best results from machine learning method are 99.2% using SVM algorithm, 98.8% using KNN algorithm and 97.2% using LDA algorithm. All those performances are resulted from datasets with combination between EMG signals from shoulder and lower limb muscles. This achievement becomes a significant factor for the future studies to design a control strategy with good human-robot interaction that can recognize the human motion intention in each different gait event to contrive comfort and safety walking assistive device for the wearer.

 File Digital: 1

Shelf
 T-Ardy Candra Sutandi .pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : T-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2021
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xv, 117 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
T-Pdf 15-22-67111226 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20516900