Prediksi Nilai Turbiditas Air Berbasis Citra Ponsel Menggunakan Deep Convolutional Neural Network ResNet-50 dan DenseNet-121 = Water Turbidity Prediction Based on Mobile Phone Image Using Deep Convolutional Neural Networks ResNet-50 and DenseNet-121
Muhammad Naufal Hisyam;
Santoso Soekirno, supervisor; Siti Aminah, supervisor; Sastra Kusuma Wijaya, examiner; Martarizal, examiner
(Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)
|
Turbiditas adalah salah satu ukuran yang sering digunakan untuk menilai kualitas air. Pengukuran turbiditas dapat dijadikan estimasi untuk mengetahui parameter fisis lain seperti zat padat tersuspensi total (TSS) atau parameter biologis seperti konsentrasi mikroorganisme. Beberapa penelitian telah mencoba menerapkan metode computer vision untuk memprediksi nilai turbiditas dari citra sebuah sampel air. Kebanyakan penelitian yang dilakukan masih menggunakan ekstraksi fitur secara manual sehingga diperlukan pengetahuan yang mencukupi terkait pengolahan citra dan pengukuran turbiditas. Pada penelitian ini dibuat sistem instrumentasi prediksi nilai turbiditas air berbasis pengolahan citra ponsel dengan ekstraksi fitur dan regresi oleh model deep convolutional neural network (DCNN). Penggunaan DCNN memungkinkan dilakukannya untuk melakukan ekstraksi fitur secara otomatis. Arsitektur DCNN yang digunakan yaitu ResNet-50 dan DenseNet-121. Efektivitas penerapan transfer learning berupa weight initialization pada DCNN juga ditinjau dalam kasus ini. Sampel yang digunakan pada penelitian ini berupa suspensi formazin dengan berbagai nilai turbiditas untuk pelatihan model dan beberapa sampel air untuk validasi model. Sampel disinari oleh LED di dalam kotak akuisisi yang dibuat untuk menampakkan fitur. Citra dari sampel diakuisisi menggunakan ponsel Samsung S20 FE dari dua sudut berbeda yaitu 0° (turbidimetry) dan 90° (nephelometry) terhadap sampel. Hasil terbaik pada penelitian ini diperoleh oleh Model ResNet-50 dengan transfer learning yang memperoleh MAE sebesar 2.44 untuk sampel formazin dan 7.31 untuk sampel air dengan citra turbidimetry. Hasil penelitian menunjukkan potensi menjanjikan penggunaan DCNN pada kasus regresi nilai turbiditas air untuk dikembangkan lebih lanjut. Turbidity is a measure that is often used to assess water quality. Turbidity measurements can be used as estimates to determine other physical parameters such as total suspended solids (TSS) or biological parameters such as the concentration of microorganisms. Several studies have tried to apply computer vision methods to predict the turbidity value from images of water samples. Most of the research conducted still uses manual feature extraction, hence sufficient knowledge regarding image processing and turbidity measurements is needed. In this study, an instrumentation system for predicting water turbidity values based on mobile phone images is made. The feature extraction and regression process are done using a deep convolutional neural network (DCNN) model. The use of DCNN allows it to perform feature extraction automatically. The DCNN architecture used is ResNet-50 and DenseNet-121. The effectiveness of implementing transfer learning in the form of weight initialization on DCNN is also reviewed in this study. The samples used in this study were formazine suspensions with various turbidity values for model training and several water samples for model validation. The sample is illuminated by an LED inside an acquisition box to reveal its features. The images of the samples were acquired using a Samsung S20 FE mobile phone from two different angles, namely 0° (turbidimetry) and 90° (nephelometry) to the sample. The best results in this study were obtained by the ResNet-50 model with transfer learning applied which obtained MAE values of 2.44 for formazine samples and 7.31 for water samples using turbidimetry images. The results show the promising potential for further development of DCNN usage in the case of water turbidity values regression. |
S-Muhammad Naufal Hisyam.pdf :: Unduh
|
No. Panggil : | S-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xiv, 65 pages : illustration + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-pdf | 14-22-54222227 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20519599 |