Analisis Konsumsi BBM Subsidi di Indonesia menggunakan k-means, Partitioning Around Medoids, dan Clustering Large Applications = Analysis of Subsidized Fuel Consumption in Indonesia using k-means, Partitioning Around Medoids, and Clustering Large Applications
Fajar Agung Prasetyo;
Rezzy Eko Caraka, supervisor; Arviansyah, examiner; Anna Amalyah Agus, examiner
(Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022)
|
Indonesia merupakan salah satu negara di dunia yang masih menerapkan subsidi untuk Bahan Bakar Minyak (BBM). Pemerintah Indonesia sesuai dengan amanah undang-undang harus menjamin penyediaan dan pendistribusian BBM bagi seluruh rakyat Indonesia. Untuk menerapkan kebijakan ini dengan tepat maka pemahaman akan pola konsumsi BBM menjadi hal yang sangat fundamental karena setiap daerah memiliki hak yang sama dalam memperoleh sumber energi termasuk BBM. Penelitian ini menggunakan metode clustering untuk mengetahui kategori kabupaten/kota berdasarkan pola konsumsi BBM subsidi. Data yang digunakan adalah data konsumsi BBM subsidi sejak Januari tahun 2016 hingga Juni tahun 2021 dalam bentuk time series. Penelitian ini membandingkan beberapa metode clustering yaitu k-means, Partitioning Around Medoid (PAM) dan Clustering Large Applications (CLARA). Hasil yang diperoleh adalah k-means menjadi metode clustering yang paling optimal untuk analisis konsumsi BBM subsidi setelah dilakukan evaluasi terhadap nilai rata-rata Silhouette, Dunn Index dan Connectivity. Hasil clustering dengan metode k-means mengindikasikan adanya dua cluster kabupaten/kota yang memiliki tingkat kerentanan terhadap konsumsi BBM yang tinggi dan rendah. Pemerintah perlu menetapkan daerah prioritas dalam pengawasan penggunaan BBM subsidi terutama daerah dengan tingkat kerentanan penggunaan BBM subsidi yang tinggi serta untuk daerah yang memiliki tingkat kerentanan rendah pemerintah perlu meninjau kembali kuota BBM subsidi yang ditetapkan Indonesia is one of the countries in the world that still applies subsidies for fuel oil (BBM). The Indonesian government following the mandate of the law must ensure the supply and distribution of fuel for all Indonesian people. Understanding the pattern of fuel consumption is very fundamental because every region has the same rights in obtaining energy sources, including fuel. This study uses the clustering method to determine the category of districts/cities based on the pattern of consumption of subsidized fuel. The data used is data on subsidized fuel consumption from January 2016 to June 2021 in the form of a time series. This study compares several clustering methods, namely k-means, Partitioning Around Medoid (PAM), and Clustering Large Applications (CLARA). The results found that k-means becomes the most optimal clustering method for the analysis of subsidized fuel consumption after evaluating the values of Silhouette, Dunn Index, and Connectivity. The results indicate that two district/city clusters have high and low levels of vulnerability to fuel consumption. The government needs to determine priority areas in supervising the use of subsidized fuel, and for areas that have a low level of vulnerability, the government needs to review the quota for subsidized fuel that has been set. |
T-Fajar Agung Prasetyo.pdf :: Unduh
|
No. Panggil : | T-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xii, 74 pages : illustrations + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
T-pdf | 15-22-54136702 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20520320 |