:: UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Model Spasial Emisi Karbon Berbasis Penggunaan Tanah di Provinsi DKI Jakarta Menggunakan Pendekatan Multi-Indeks dan Machine Learning = Spatial Model of Land Use Based Carbon Emission in DKI Jakarta Province Using Multi-Index and Machine Learning Approach

Masagus Achmad Fathan Mubina; Muhammad Dimyati, supervisor; Masita Dwi Mandini Manesa, supervisor; Supriatna, examiner; Satria Indratmoko, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Ancaman perubahan iklim semakin nyata dengan meningkatnya emisi gas rumah kaca termasuk emisi karbon. Peningkatan itu disebabkan aktivitas manusia yang dapat dilihat dari pola penggunaan tanah. Provinsi DKI Jakarta sebagai wilayah perkotaan dengan penduduk yang besar memiliki intensitas aktivitas manusia yang tinggi. Tingginya aktivitas manusia tersebut menjadi alasan DKI Jakarta perlu untuk memenuhi target pengurangan emisi pada sektor energi sebagai bagian dari Paris Agreement. Tujuan penelitian ini adalah membuat dan menganalisis model spasial emisi karbon sektor energi berdasarkan reflektansi permukaan pada penggunaan tanah yang terekam Sentinel 2 melalui pendekatan multi-indeks. Penelitian dilakukan di wilayah daratan Provinsi DKI Jakarta dengan menggunakan data geospasial resmi yang tersedia dan penginderaan jauh untuk ekstraksi informasi terkait penggunaan tanah serta inventarisasi emisi gas rumah kaca dari konsumsi energi tahun 2020 sebagai referensi. Pengolahan data dilakukan dengan menggunakan machine learning classifier yang tersedia pada Google Earth Engine untuk klasifikasi terbimbing Sentinel 2 dan ditentukan kesesuaian nilai emisinya atas dasar berbagai faktor. Perhitungan gas rumah kaca terdiri dari emisi bangunan dan emisi transportasi yang melibatkan konsumsi energi stasioner maupun bergerak dan faktor emisi. Analisis regresi linier berganda digunakan sebagai model akhir yang mengaitkan emisi karbon dari konsumsi energi dengan karakter berbagai kanal dan indeks pada penggunaan tanah. Hasil penelitian menunjukkan bahwa tutupan awan citra, parameter algoritma, dan dataset berpengaruh pada identifikasi penggunaan tanah dan algoritma terbaik adalah Random Forest dengan akurasi umum 0,62. Reflektansi permukaan red edge 1 dan 2 serta SWIR 1 dan 2 baik untuk klasifikasi. Penggunaan tanah yang paling banyak menghasilkan emisi pada model adalah industri dengan koefisien 0,078. Nilai R kuadrat dari model mencapai 0,65 mengindikasikan pengaruh prediksi variabel sebesar 65%. Membagikan pengaruh setiap kelas penggunaan tanah sebagai variabel moderator dan reflektansi Sentinel 2 terhadap emisi karbon dalam bentuk model yang berbeda dapat digunakan untuk melakukan estimasi emisi karbon

The threat of climate change is becoming more evident with the increase in greenhouse gas emissions, including carbon emissions. The increase was due to human activities which can be seen from the pattern of land use. DKI Jakarta Province as an urban area with a large population has a high intensity of human activity. The high level of human activity is the reason DKI Jakarta needs to meet the emission reduction target in the energy sector as part of the Paris Agreement. The purpose of this study was to create and analyze a spatial model of energy sector carbon emissions based on surface reflectance on land use recorded by Sentinel 2 through a multi-index approach. The study was conducted in the mainland area of ​​DKI Jakarta Province using available official geospatial data and remote sensing for the extraction of information related to land use as well as greenhouse gas emissions inventory data from energy consumption in 2020 as a reference. Data processing is carried out using machine learning classifiers available on Google Earth Engine for supervised classification on Sentinel 2 and the suitability of the emission values is determined ​​based on various factors. The greenhouse gas calculation consists of building emissions and transportation emissions involving stationary and mobile energy consumption and emission factors. Multiple linear regression analysis was used as the final model that relates carbon emissions from energy consumption with the character of various bands and indices on land use. The results showed that the image cloud cover, algorithm parameters, and datasets affect the identification of land use and the best algorithm is Random Forest with an overall accuracy of 0.62. The surface reflectance of red edge 1 and 2 as well as SWIR 1 and 2 is good for classification. The land use that produces the most emissions in the model is industry with a coefficient of 0.078. The R squared value of the model reaches 0.65 indicating the predictive effect of the variable is 65%. Sorting the effect of each land use class as moderator variable and Sentinel 2 reflectance on carbon emissions in different models can be used to estimate carbon emissions.

 File Digital: 1

Shelf
 S-Masagus Achmad Fathan Mubina.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 101 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-83280486 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20521857