Tingginya tingkat penggunaan media sosial, membuat media sosial sering digunakan untuk menjadi salah satu sumber data pada banyak penelitian. Salah satu penelitian yang paling sering digunakan adalah analisis sentimen. Analisis sentimen adalah bidang studi yang menganalisis pendapat, sentimen, evaluasi, penilaian, sikap, dan emosi orang terhadap entitas seperti produk, layanan, organisasi, individu, isu, peristiwa, topik, dan atributnya. Pada penelitian ini, penulis menggunakan model Bidirectional Encoder Representation from Transformers (BERT) pada permasalahan analisis sentimen. Pada penelitian ini model BERT juga dibandingkan dengan dua model dasar lainnya, yaitu Convolutional Neural Network (CNN) dan Long-Short Term Memory (LSTM). Agar model dapat belajar secara berkelanjutan dari beberapa domain data, model tersebut juga diimplementasikan pada lifelong learning. Hasilnya, BERT mengalami penurunan akurasi sebanyak 8,21% dari 89,17% menjadi 80,96% pada uji loss of knowledge dan mengalami kenaikan sebesar 6,67% dari 82,93% menjadi 89,60% pada uji transfer of knowledge. High level usage of social media makes this platform frequently used as one of the sources for educational studies such as sentiment analysis. Sentiment analysis is a field of study that analyzes people's opinions, sentiments, evaluations, judgments, attitudes, and emotions towards entities such as products, services, organizations, individuals, issues, events, topics, and their attributes. In this study, author will use Bidirectional Encoder Representation from Transformers (BERT) model for sentiment analysis problem. BERT will also be compared with two others basic model which is Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM). In order for the model to learn continuously from several data domains, lifelong learning is also implemented in the model. As a result, BERT accuracy decreased 8.21% from 89,17% to 80,96% in loss of knowledge test and increased 6.67% from 82,93% to 89,60% in transfer of knowledge test. |