Model Runtun Waktu BEKK Multivariat GARCH dan Implementasinya pada Saham BMRI dan BBCA = BEKK Multivariate GARCH Model and Its Implementation on BMRI and BBCA Stock
Graceilla Puspita Arum;
Mila Novita, supervisor; Ida Fithriani, supervisor; Bevina Desjwiandra Handari, examiner; Saskya Mary Soemartojo, examiner
(Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)
|
Data runtun waktu keuangan umum digunakan oleh investor untuk menganalisis pergerakan harga suatu aset investasi. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) adalah model runtun waktu yang biasa digunakan untuk menganalisis data keuangan. GARCH dapat menangkap pengelompokkan volatilitas yang menjadi karakteristik pada data-data keuangan. Pada dunia perekonomian terdapat keterkaitan antara suatu data keuangan dengan data keuangan yang lain. Oleh karena itu dikembangkan model multivariat GARCH (MGARCH) untuk memperlihatkan informasi tentang pergerakan bersama dua variabel atau lebih serta menggambarkan interaksi antardata keuangan yang diteliti. Pada skiripsi ini dibahas versi multivariat dari GARCH, yaitu Baba Engle Kroner dan Kraft (BEKK) GARCH. Pembahasan dimulai dari bagaimana pembentukan struktur varian kovarian bersyarat model BEKK MGARCH, penaksiran parameter, sampai analisis data menggunakan model BEKK MGARCH dengan asumsi error model berdistribusi normal multivariat. Metode yang digunakan untuk mengestimasi parameter adalah metode maximum likelihood. Penurunan analitik pada metode maximum likelihood dibantu dengan sifat yang ada pada quasi maximum likelihood di mana penurunan fungsi likelihood dilakukan dengan menurunkan setiap elemen pada matriks varian kovarian bersyaratnya. Namun estimasi secara analitik tidak dapat digunakan karena persamaan yang non linear, maka digunakan penyelesaian secara numerik menggunakan algoritma quasi-Newton Broyden, Fletcher, Goldfarb, dan Shanno (BFGS). Kemudian model diimplementasikan pada data harian harga penutupan saham BMRI dan BBCA. Hasil analisis menunjukkan bahwa volatilitas saham BMRI dan BBCA tanggal 01 April 2021 sampai dengan 31 Maret 2022 dipengaruhi oleh shock perusahaan sendiri pada masa lampau. Financial time series data has been widely used by investors to analyze the movement of any asset pricing. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is a time series model that usually used to analyze financial datas. GARCH can capture the volatility clustering phenomenon found in most financial datas. In the economic world, there is relation between one to another financial data. Hence, GARCH model has been developed into its multivariate version called multivariate GARCH (MGARCH) to capture the information about comovement also the relationship between two or more variables. In this undergraduate thesis, we explain Baba Engle Kroner and Kraft (BEKK) multivariat GARCH, starting from how the structure of variance and covariance developed, parameter estimation, to implementation of BEKK MGARCH model assuming the error model has multivariate normal distribution. Parameter estimation will be done using the maximum likelihood method with property of quasi maximum likelihood. Parameter estimation can not be solved analytically because the likelihood function is non linear, so we used numerically method called quasi-Newton with Broyden, Fletcher, Goldfarb, dan Shanno (BFGS) algorithms. Then, this BEKK MGARCH model will be used to check the volatility spillover between BMRI and BBCA stock return. The analysis in chapter 4 shows that there is no volatility spillover between BMRI and BBCA. The volatility of their return is affected by their own past shock. |
S-Graceilla Puspita Arum.pdf :: Unduh
|
No. Panggil : | S-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xiv, 80 pages : illustration + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-pdf | 14-23-38972309 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20526773 |