Full Description

Responsibility Statement
Language Code eng
Edition
Collection Source Springerlink
Cataloguing Source LibUI eng rda
Content Type text (rdacontent)
Media Type computer (rdamedia)
Carrier Type online resource (rdacarrier)
Physical Description xiv, 494 pages : illustration
Link https://link.springer.com/book/10.1007/978-3-319-55252-1
 
  •  Availability
  •  Digital Files: 1
  •  Review
  •  Cover
  •  Abstract
Call Number Barcode Number Availability
e20528414 20-22-00825649 TERSEDIA
No review available for this collection: 20528414
 Abstract
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models.