Model Matematika Penyebaran Penyakit Hepatitis B dengan Intervensi Vaksinasi = A Mathematical Model of the Spread of Hepatitis B with Vaccination Intervention
Cella Haruningtyastuti;
Hengki Tasman, supervisor; Dipo Aldila, examiner; Siti Aminah, examiner
(Fakultas Matematika dan Ilmu Penetahuan Alam Universitas Indonesia, 2022)
|
Hepatitis B merupakan salah satu penyakit menular yang dapat menyebabkan kematian. Hepatitis B adalah penyakit hati yang disebabkan oleh virus hepatitis B. Penyakit ini dapat dicegah penularannya dengan melakukan vaksinasi. Pada skripsi ini dikonstruksi model matematika SVAKR yang membahas mengenai model matematika penyebaran penyakit hepatitis B dengan intervensi vaksinasi. Kajian analitik dan simulasi numerik telah dilakukan pada model tersebut untuk mempermudah dalam memahami dinamika populasi jangka panjang. Kajian analitik yang telah dilakukan meliputi konstruksi model matematika beserta interpretasi model tersebut, titik keseimbangan beserta kestabilannya, dan Basic Reproduction Number (R0). Pada kajian analitik, didapatkan hasil bahwa titik keseimbangan bebas penyakit ada dan stabil asimtotik lokal ketika R0 < 1. Berdasarkan simulasi numerik yang telah dilakukan, diperoleh informasi bahwa intervensi vaksinasi dapat mengendalikan penyebaran penyakit hepatitis B. Lebih lanjut apabila vaksinasi diiringi dengan peningkatan laju kesembuhan infeksi akut, maka penyebaran penyakit hepatitis B dapat dikendalikan dengan lebih optimal. Hepatitis B is an infectious disease that can cause death. Hepatitis B is a liver disease caused by the hepatitis B virus. This disease can be prevented from being transmitted by vaccination. In this undergraduate thesis, a mathematical model SV AKR is constructed which discusses the mathematical model of the spread of hepatitis B disease with vacci- nation intervention. Analytical studies and numerical simulations have been carried out on the model to make it easier to understand long-term population dynamics. Analytical studies that have been carried out includes the construction of a mathematical model and its interpretation, the equilibrium point and its stability, and Basic Reproduction Number (R0). In the analytical study, it was found that a disease-free equilibrium point exists and locally asymptotically stable when R0 < 1. Based on numerical simulations that have been carried out, it was found that vaccination intervention was able to control the spread of hepatitis B. Furthermore, if vaccination is accompanied by an increase in recovery rate of acute infection, the spread of hepatitis B can be controlled more optimally. |
S-Cella Haruningtyastuti.pdf :: Unduh
|
No. Panggil : | S-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Matematika dan Ilmu Penetahuan Alam Universitas Indonesia, 2022 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource (rdcarrier) |
Deskripsi Fisik : | xiii, 75 pages : illustration + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-pdf | 14-23-90697184 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20528547 |