Salah satu faktor manusia yang dapat menyebabkan kecelakaan lalu lintas adalah pengemudi yang mengantuk dan tidak fokus pada jalan yang ada di hadapannya. Tanda-tanda pengemudi yang mengantuk dapat diamati berdasarkan tiga pengukuran, yaitu uji kinerja, uji fisiologis, dan uji perilaku. Karena uji fisiologis dan kinerja cukup sulit dan mahal untuk dilaksanakan, maka uji perilaku masih menjadi pilihan yang baik untuk digunakan dalam mendeteksi rasa kantuk sejak dini. Salah satu perilaku manusia yang bisa diamati untuk mendeteksi kantuk adalah gerakan mata. Oleh karena itu, penelitian ini akan merancang suatu model untuk mendeteksi rasa kantuk pengemudi secara otomatis berdasarkan uji perilaku yang menganalisis aktivitas mata. Model yang diusulkan akan mendeteksi area mata dan kedipan berdasarkan citra wajah pengemudi menggunakan model deep learning Mask Region Convolutional Neural Network (Mask R-CNN). Kemudian, data kedipan dari masing-masing urutan gambar akan dikalkulasi menggunakan Percentage of Eyelid Closure (PERCLOS) untuk mendeteksi apakah pengemudi dalam keadaan mengantuk atau waspada. Hasil dari penelitian ini menunjukkan hasil akurasi sebesar 0,70. Selain itu, diperoleh nilai precision, recall, dan F1 score dari model Mask R-CNN yaitu 0,667 untuk precision, 0,80 untuk recall, serta 0,727 untuk F1 score. One of the human factors that can cause traffic accidents are the drowsy drivers that do not focus on the road before them. The signs of a drowsy driver can be observed based on three measurements; performance test, physiological test, and behavioural test. Since the physiological and performance test are quite difficult and expensive to implement, the behavioural test is still a good choice to use for detecting early drowsiness. One of the human behaviours that can be observed is the eye movement. Therefore, this study will design a model for automatically detecting driver drowsiness based on a behavioural test, which analyses the eye activity. The proposed model will detect the eye area and state based on drivers’ face images using Mask Region Convolutional Neural Network (Mask R-CNN) deep learning model. Then, the blink data from each image sequence will be calculated using Percentage of Eyelid Closure (PERCLOS) to detect whether the driver is in a drowsy or alert state. The result of this research shows an accuracy score of 0,70. Besides that, the precision, recall, and F1 score are also obtained from the Mask R-CNN model, namely 0,667 for precision, 0,80 for recall, and 0,727 for F1 score. |