Teknologi microfluidics untuk tujuan terapi telah berkembang khususnya dalam bidang drug delivery. Double emulsion droplet mampu memenuhi kebutuhan drug delivery karena terdiri dari geometry shell and core yang mana mampu melindungi drug yang terdapat di dalam shell. Perkembangan drug delivery bergantung pada geometri microchannel dan parameter kontrol laju aliran yang mana membutuhkan riset lebih lanjut untuk memenuhi kebutuhan industri. Kebutuhan industri saat ini adalah untuk membentuk double emulsion droplet yang mampu memenuhi dua karakteristik droplet, yaitu tingkat monodispersity dan high-throughput. Kemudian, modified flow-focusing device dengan injection model sebelum junction pertama dan sudden expansion model pada junction kedua dipertimbangan untuk dikembangkan dalam riset ini. Mengingat terdapat kesulitan dalam proses manufaktur dan keterbatasan riset dalam penelitian eksperimental untuk menentukan kualitas dan channel yang bervariasi, CFD (Computational Fluid Dynamics) dipertimbangkan untuk menganalisis performa device. Lebih lanjut, VOF (Volume of Fluid) diimplementasikan dalam penelitian ini untuk mendapatkan pengetahuan mendalam dalam fenomena aliran multifasa karena masih sedikit riset yang menganalisis dengan model tersebut khususnya untukk menganalisis pembentukkan double emulsion droplet. Kemudian, adanya kompleksitas dalam penentukan flow rate control parameter untuk menentukan solusi terbaik yang mana menentukan kualitas double emulsion droplet generation. Tujuan dalam riset ini adalah untuk menganalisis modified flow-focusing device, memvisualisasikan evolusi droplet dan evolusi tekanan selama proses, memetakan flow regime, dan analisis performa untuk membentuk produk double emulsion yang cocok untuk aplikasi drug delivery. Riset ini menggunakan software Design Expert untuk menentukan jumlah run minimal yang dibutuhkan dalam simulasi untuk mendapatkan hasil yang signifikan. Software ANSYS Fluent untuk simulasi CFD yang mana memungkinkan untuk memvisualisasikan evolusi droplet dan tekanannya. Software ImageJ untuk analisis statistik gambar untuk memeroleh diameter rata-rata droplet, coefficient of variation (CV) dan droplet generation rate. TOPSIS untuk menentukan solusi terbaik dari parameter kontrol laju aliran. Berdasarkan hasil analisis, modified flow-focusing device yang dilengkapi dengan injection model dan sudden expansion model dapat memastikan kestabilan dalam pemebentukkan double emulsion droplet. Hasil CFD menunjukkan bahwa terdapat dua flow regime yang diamati, yaitu dripping dan narrowing jetting. Evolusi droplet dapat menyediakan fenomena dua dripping instabilities yang terjadi selama mekanisme break-up dalam pembentukkan droplet. Kemudian, flow regime map menunjukkan metode kontrol flow regime untuk memproduksi double emulsion droplet untuk kebutuhan drug delivery. Parameter kontrol laju aliran terbaik yang menenuhi tingkat monodispersity dan high-throughput yang dibutuhkan dapat diperoleh menggunakan TOPSIS, yaitu droplet yang memiliki diameter outer droplet rata-rata sebesar 34.51 μm dan diameter inner droplet rata-rata sebesar 14.76 μm, kemudian CV (Coefficient of Variation) dari outer droplet sebesar 1.95% dan CV dari inner droplet sebesar 2.34% yang memenuhi kebutuhan monodispersity, serta frekuensi pembentukkan droplet sebesar 818.18 Hz untuk kedua outer dan inner droplet yang memenuhi high-throughput. Hasil ini diperoleh menggunakan kombinasi dari 2.3 μL/h inner phase flow rate, 52.4 μL/h middle phase flow rate, and 348.3 μL/h outer phase flow rate dan memiliki potensi untuk drug delivery khususnya dalam pemenuhan kebutuhan di industri. Microfluidics technology for therapeutics purpose has further developed especially in the drug delivery. The double emulsion droplet satisfies the drug delivery since it consists of core and shell geometry which can protect the drug inside the shell. Drug delivery development depends on microchannel geometry and flow rate control parameter which needs follow up research to fulfil industrial need. The industrial current need is to generate double emulsion droplet which meets both high-throughput and monodispersity. Then, modified flow-focusing device with an injection model before first junction and sudden expansion model at second junction is considered in this research. Because of difficulty in manufacturing and limitation in experimental for determining the quality of various channels, CFD (Computational Fluid Dynamics) is considered to analyze the device performance. Furthermore, the VOF (Volume of Fluid) is implemented to obtain insights in the multiphase flow phenomenon since this model lacks research especially to analyze the double emulsion droplet generation. Then, the complexity in determination of flow rate control parameter leads to find the best solution which prescribes quality of double emulsion droplet generation. The research aims to analyze the modified flow-focusing microfluidics device, visualizing droplets evolution and pressure evolution during the process, mapping the flow regime, and performance analysis to generate a double emulsion product suitable for drug delivery application. The research utilizes Design Expert software to determine number of simulations run required to obtain significant result. ANSYS Fluent is utilized for CFD simulation which enables to visualize droplet and pressure evolution. ImageJ is used for image statistical analysis to gain average droplet diameter, coefficient of variation (CV) and droplet generation rate. TOPSIS for choosing the best solution of flow rate control parameter. Based on the analysis, the modified flow-focusing device equipped with the injection model and sudden expansion can ensure the stability in double emulsion droplet generation. The CFD result shows that there are two flow regimes observed, that is dripping and narrowing jetting. The droplet evolution can provide two dripping instability occurs during the break-up mechanism in droplet generation. Then, the flow regime map depicts the way to control the flow regime to produce double emulsion droplet for drug delivery. The best flow rate control parameter which satisfies both high-throughput and monodispersed need is obtained using TOPSIS, that is 34.51 μm outer droplet and 14.76 μm inner droplet for average droplet diameter, then 1.95% outer droplet CV and 2.34% inner droplet CV for satisfying the monodispersity, and 818.18 Hz of both outer and inner droplet generation rate satisfying the high-throughput. This result can be achieved using combination of 2.3 μL/h inner phase flow rate, 52.4 μL/h middle phase flow rate, and 348.3 μL/h outer phase flow rate and potential to satisfy the drug delivery in accordance with the industrial need. |