Metilen biru (MB) dan metil merah (MM) merupakan jenis limbah yang dihasilkan dari industri tekstil. MB dan MM memiliki gugus kromofor yang bersifat polar, sehingga dapat berikatan kuat dengan molekul air. Nanokomposit perak dan karbon aktif berpotensi sebagai adsorben untuk mengatasi pencemaran MB dan MM di perairan. Nanopartikel perak (AgNPs) telah dikompositkan dengan karbon aktif (AC) untuk meningkatkan fungsionalitas material tersebut. AgNPs diketahui memiliki kemampuan untuk meningkatkan energi permukaan dan luas permukaan. Kombinasi limbah ampas kopi (CW) dan AgNPs berpotensi dapat meningkatkan fungsionalitas dan efisiensi daya adsorpsi material lebih besar. Penelitian ini melakukan sintesis hijau nanokomposit perak dan ampas kopi dengan metode iradiasi microwave, kemudian diaktivasi secara kimia dan fisika dengan metode pirolisis. Material nanokomposit dikarakterisasi lebih lanjut dengan UV-Vis, FTIR, SEM-EDS, dan XRD. Percobaan kesetimbangan batch dilakukan untuk mengevaluasi pengaruh pH, dosis adsorben, konsentrasi awal, suhu, dan kecepatan agitasi pada proses adsorpsi MB dan MM. Selain itu, uji desorpsi juga dilakukan untuk mengetahui efisiensi adsorpsi material adorben. Analisis data dilakukan untuk memperoleh model isoterm, kinetika, dan termodinamika yang sesuai. Methylene blue (MB) and methyl red (MR) are types of waste generated from the textile industry. MB and MR have polar chromophore groups that bind strongly with water molecules. Silver nanocomposites and activated carbon (AC) have the potential as adsorbents to overcome MB and MR pollution in aquatic. Silver nanoparticles (AgNPs) have been composited with AC to increase the functionality of the material. AgNPs are known to have the ability to increase surface energy and surface area. The combination of spent coffee grounds (CW) and AgNPs has the potential to increase the functionality and efficiency of the material's greater adsorption capacity. This research conducted a green synthesis of silver nanocomposites and CW by microwave irradiation, then activated chemically (H3PO4) and physically by pyrolysis. Materials were further characterized by UV-Vis, FTIR, SEM-EDS, and XRD. Batch equilibrium experiments were carried out to evaluate the effect of pH, adsorbent dosage, initial concentration, temperature, and agitation speed on the MB and MR adsorption processes. In addition, a desorption study was also carried out to determine the adsorption efficiency of the adsorbent materials. Data analysis was performed to obtain appropriate isothermal, kinetic, and thermodynamic models. |