:: UI - Tugas Akhir :: Kembali

UI - Tugas Akhir :: Kembali

Formulasi dan Uji Reliabilitas Sistem Skoring untuk Mendiagnosis Osteosarkoma = Formulation and Reliability Study of Scoring System to Diagnose Osteosarcoma

Rio Wikanjaya; Achmad Fauzi Kamal, supervisor; Indah Suci Widyahening, examiner; Ismail Hadisoebroto Dilogo, examiner; Lubis, Andri Maruli Tua, examiner (Fakultas Kedokteran Universitas Indonesia, 2023)

 Abstrak

Latar Belakang: Osteosarkoma merupakan keganasan tulang primer dengan beragam
subtipe dan memerlukan pendekatan multidisiplin dalam diagnosis dan tatalaksananya.
Hingga saat ini belum ada alat diagnostik yang terbukti dapat mendekati
clinicopathological conference (CPC) sebagai standar baku emas. Keterbatasan fasilitas,
biaya, dan antrian pemeriksaan yang panjang sering kali menunda diagnosis
osteosarkoma. Penelitian ini bertujuan untuk membuat model sistem skoring berdasarkan
temuan klinis, laboratorium, radiografi konvensional, dan histopatologis untuk
mendiagnosis osteosarkoma secara cepat dan tepat.
Metode: Penelitian ini dilakukan dalam dua tahap. Tahap pertama bertujuan untuk
memformulasikan sistem skoring untuk mendiagnosis osteosarkoma menggunakan data
sekunder secara retrospektif di RS. Dr. Cipto Mangunkusumo tahun 2016 hingga 2020.
Studi ini melibatkan semua pasien dengan suspek keganasan tulang primer dan
didiagnosis akhir berdasarkan CPC. Uji analisis dilakukan secara univariat, bivariat, dan
multivariat menggunakan regresi logistik backward stepwise dilanjutkan dengan uji
kalibrasi dan diskriminasi menggunakan uji Hosmer-Lemeshow dan kurva receiving
operator characteristic (ROC), serta menentukan titik potong pada model. Tahap kedua
ditujukan untuk mengevaluasi model sistem skoring yang diformulasi pada tahap pertama
secara prospektif menggunakan data primer sejak September 2022 hingga Desember
2022 di poliklinik Orthopaedi dan Traumatologi RS. Dr. Cipto Mangunkusumo.
Hasil: Penelitian tahap pertama melibatkan 120 subjek dan menghasilkan dua model
sistem skoring, yaitu dengan mempertimbangkan riwayat pijat (model 1) dan tanpa
mempertimbangkan riwayat pijat (model 2). Dari hasil analisis multivariat, didapatkan
sembilan variabel yang dimasukan dalam model sistem skoring yaitu usia, indeks massa
tubuh (IMT), onset, riwayat pijat, lokasi tumor, kadar alkaline phosphatase (ALP), laktat
dehidrogenase (LDH), letak lesi berdasarkan radiografi konvensional, serta gambaran
histopatologis berdasarkan fine needle aspiration biopsy (FNAB). Uji kalibrasi model 1
dan 2 menunjukan kalibrasi yang baik (p=0,498 dan p=0,917). Uji diskriminasi pada
model sistem skoring menunjukan nilai area under the curve (AUC) 0,818 dengan nilai
p<0,001 pada model 1 dan 2. Titik potong pada model 1 dan 2 berturut-turut adalah 19
dan 11 poin. Penelitian tahap kedua melibatkan 34 subjek dan menunjukan sensitivitas,
spesifisitas, dan akurasi model 1 dan 2 berturut turut sebesar 81,25% dan 87,5%, 100%
dan 100%, dan 91,1% dan 94,1%.
Kesimpulan: Didapatkan dua model sistem skoring yang mampu mendiagnosis
osteosarkoma dengan cepat dan tepat dibandingkan dengan CPC. Lokasi tumor di lutut
dan gambaran sel pleiomorfik dengan atau tanpa matriks osteoid ganas merupakan faktor
yang paling berpengaruh terhadap diagnosis osteosarkoma.

Introduction : Osteosarcoma, being one of the most prevalent among the primary bone
malignancies, consists of multiple subtypes and requires a multidisciplinary approach for
proper diagnosis and treatment. Lately, there have not been a diagnostic tool that is able
to rival the accuracy of clinicopathological conference (CPC) as a gold standard in
determining the diagnosis and treatment of osteosarcoma. Limitations in budgeting, as
well as the time taken for each patient to undergo supporting examinations often leads to
a delayed diagnosis. This research aims to create a scoring system that is based on clinical
symptoms, laboratory results, conventional radiology, as well as histopathological results
to establish a quick and accurate diagnosis for osteosarcoma.
Method: This research was conducted in two stages; the first stage aims to formulate the
scoring system for diagnosing osteosarcoma by using a retrospective, secondary data
obtained from Dr. Cipto Mangunkusumo Hospital from 2016 up to 2020. This study
involved all patients with suspected bone malignancies that was eventually diagnosed
with osteosarcoma by means of CPC. The analysis was done with univariate, bivariate,
and multivariate analysis using backward stepwise logistic regression method followed
by calibration and discrimination test using Hosmer-Lemeshow test and receiving
operator characteristic (ROC) curve analysis, and determined the cut-off point in the
scoring system model. The second stage was aimed to prospectively evaluate the
previously formulated scoring system model in the first stage using primary data from
September 2022 to December 2022 at Orthopaedic and Traumatology outpatient clinic
Dr. Cipto Mangunkusumo Hospital.
Result: The first stage of the study involved 120 subjects and resulted two models of
scoring system, namely by considering massage history (model 1) and without
considering massage history (model 2). From multivariate analysis, nine variables were
included in the scoring system model, including age, body mass index (BMI), onset,
massage history, tumor location, alkaline phosphatase (ALP) levels, lactate
dehydrogenase (LDH), location of the lesion based on conventional radiography, and
histopathological finding based on fine needle aspiration biopsy (FNAB). Calibration
tests for models 1 and 2 showed good calibration (p=0.498 and p=0.917). The
discrimination test on the scoring system model showed an area under the curve (AUC)
value of 0.818 with a p-value <0.001 in both models 1 and 2. The cut-off points in model
1 and 2 were 19 and 11, respectively. The second stage of the study involved 34 subjects
with the sensitivity, specificity, and accuracy of models 1 and 2 showing 81.25% and
87.5%, 100% and 100%, and 91.1% and 94.1%, respectively.
Conclusion: This study has proposed two models of scoring systems that can be used
for a more rapid and accurate diagnosis of osteosarcoma when compared to CPC; the
location of the tumor mass in the knee joint and the appearance of pleomorphic cells, with
or without the appearance of malignant osteoids, both being significant factors in
diagnosing osteosarcoma

 File Digital: 1

Shelf
 SP-Rio Wikanjaya.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : TA-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Jakarta: Fakultas Kedokteran Universitas Indonesia, 2023
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xix, 111 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
TA-pdf 16-23-22235919 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920523097