Pengembangan Sistem Identifikasi Cessna-172P berbasis Deep Learning Neural Network = System Identification of Cessna-172P based on Deep Learning Neural Networks
Kivlan Rafly Bahmid;
Benyamin Kusumoputro, supervisor; Abdul Halim, examiner; Aries Subiantoro, examiner
(Fakultas Teknik Universitas Indonesia, 2023)
|
Salah satu aspek pertahanan negara yang cukup penting adalah pertahanan udara negara. Sayangnya, Industri Pertahanan Indonesia masih cukup kurang mendukung. Salah satu isu yang diakibatkan oleh masalah ini adalah kurang berkembangnya teknologi pertahanan udara di Indonesia dibanding dengan negara-negara lain, seperti teknologi pengendalian pesawat, seperti Unmanned Aerial Vehicle (UAV). Oleh karena ini, diperlukan pengembangan teknologi pengendalian pesawat yang mandiri dan bersetara dengan pihak luar negeri. Dinamika penerbangan merupakan masalah yang bersifat non-linear, time-varying, memiliki coupling, dan terefek oleh gangguan eksternal. Untuk memecahkan masalah ini, diperlukan pengendali pesawat berbasis metode Direct Inverse Control. Direct Inverse Control memerlukan sistem identifikasi dari sistem yang ingin dikendalikan agar dapat mengembangkan neural network inverse. Pada penelitian ini, diajukan sistem identifikasi pesawat Cessna-172P berbasis Deep Neural Network dan Recurrent Neural Network. Kinerja kedua sistem identifikasi sudah cukup dalam mereplikasikan dinamika penerbangan pesawat Cessna-172P. Dari analisis kinerja kedua sistem identifikasi, sistem identifikasi berbasis recurrent neural network menghasilkan kesahalan prediksi yang lebih rendah, tetapi menggunakan daya dan waktu komputasi yang lebih banyak. One important aspect of national defense is the country's air defense. Unfortunately, the Indonesian Defense Industry still lacks sufficient support. One issue resulting from this problem is the underdevelopment of air defense technology in Indonesia compared to other countries, such as aircraft control technology like Unmanned Aerial Vehicles (UAV). Therefore, the development of independent aircraft control technology that is on par with foreign counterparts is needed. Flight dynamics pose nonlinear, time-varying challenges with coupling and are affected by external disturbances. To address this problem, an aircraft controller based on the Direct Inverse Control method is required. Direct Inverse Control necessitates system identification of the desired controlled system to develop an inverse neural network. In this study, a Deep Neural Network and Recurrent Neural Network-based identification system for the Cessna-172P aircraft is proposed. Both identification systems perform well in replicating the flight dynamics of the Cessna-172P aircraft. From the performance analysis of both identification systems, the recurrent neural network-based identification system produces lower prediction errors but requires more computational power and time. |
S-Kivlan Rafly Bahmid.pdf :: Unduh
|
No. Panggil : | S-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Teknik Universitas Indonesia, 2023 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUi ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource (rdcarrier) |
Deskripsi Fisik : | xii, 57 pages : illustration |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-pdf | 14-24-79417822 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 9999920525864 |