Model Penyebaran Demam Berdarah Dengue dengan Intervensi Penemuan Kasus Aktif = Dengue Spread Model with Active Case Finding Intervention
Athaya Yumna Fathiyah;
Dipo Aldila, supervisor; Putri Zahra Kamalia, supervisor; Hengki Tasman, examiner; Rahmi Rusin, examiner
(Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)
|
Demam berdarah dengue (DBD) merupakan salah satu vector-borne diseases yang disebabkan oleh virus dengue dan ditularkan oleh nyamuk Aedes Aegypti dan Aedes Albopictus. Penyakit DBD dapat dibedakan menjadi dua, yaitu DBD tanpa gejala dan dengan gejala. Salah satu strategi untuk menangani DBD adalah penemuan kasus aktif, yaitu proses identifikasi terhadap orang yang diduga menderita DBD menggunakan tes diagnostik. Setelah terkonfirmasi, penderita DBD akan diberikan perawatan. Pada skripsi ini digunakan model matematika untuk melihat bagaimana peran penemuan kasus aktif dalam pengendalian DBD. Model dibentuk menggunakan sistem persamaan diferensial biasa nonlinier berdimensi sembilan dan melibatkan dua populasi yaitu manusia dan nyamuk. Populasi manusia dibagi menjadi tujuh subpopulasi, sedangkan populasi nyamuk dibagi menjadi dua subpopulasi. Dari model, dilakukan kajian analitik yang meliputi analisis nilai bilangan reproduksi dasar , analisis keberadaan dan kestabilan titik keseimbangan bebas penyakit dan titik keseimbangan endemik. Dilakukan kajian numerik meliputi analisis sensitivitas dan elastisitas terhadap R0, analisis sensitivitas lokal sistem dinamik serta simulasi autonomous dari model. Berdasarkan kajian analitik yang dilakukan, diperoleh bahwa titik keseimbangan bebas penyakit stabil asimtotik lokal pada R0<1. Pada R0 = 1, model dapat mengalami bifurkasi maju atau mundur. Sehingga titik endemik dapat muncul ketika R0<1. Hasil kajian numerik yang dilakukan menunjukkan bahwa penemuan kasus aktif dapat mereduksi jumlah manusia terinfeksi dalam populasi. Dengue is one of the vector-borne diseases caused by the dengue virus and transmitted by Aedes Aegypti and Aedes Albopictus mosquitoes. Dengue can be divided into asymptomatic and symptomatic. One strategy to control dengue is active case finding. Active case finding aims to find dengue cases that have not been detected using diagnostic tests. Once confirmed, dengue sufferers will receive treatment. This thesis uses a mathematical model to examine the role of active case finding in dengue control. The model will use a nine-dimensional nonlinear differential equation system and involves two populations, humans and mosquitoes. The human population is divided into seven subpopulations, and the mosquito population is divided into two subpopulations. From the model, an analytical study will be carried out including analysis of the basic reproduction number (R0), existence and stability of disease-free equilibrium points and endemic equilibrium points. Next, a numerical study will be conducted in this thesis including sensitivity and elasticity analysis of R0, local sensitivity analysis of the dynamic system, and autonomous simulation of the model. Analysis of the model shows that disease-free equilibrium is globally asymptotically stable when R0<1. Furthermore, when R0=1, the model can perform forward or backward bifurcation. Numerical studies show that increasing the active case finding rate will reduce the number of infected humans in the population. |
S-Athaya Yumna Fathiyah.pdf :: Unduh
|
No. Panggil : | S-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xii, 101 pages : illustration |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-pdf | 14-24-83514624 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 9999920532440 |