Deskripsi Lengkap

Sumber Pengatalogan : LibUI eng rda
ISSN : 20869614
Majalah/Jurnal : International Journal of Technology
Volume : Vol. 8, No. 4, July 2017: Hal. 601-610
Tipe Konten : text (rdacontent)
Tipe Media : unmediated (rdamedia)
Tipe Carrier : volume (rdacarrier)
Akses Elektronik : https://doi.org/10.14716/ijtech.v8i4.9476
Institusi Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 4 R. Koleksi Jurnal
 
  •  Ketersediaan
  •  File Digital: 0
  •  Ulasan
  •  Sampul
  •  Abstrak
No. Panggil No. Barkod Ketersediaan
UI-IJTECH 8:4 (2017) 08-23-03114452 TERSEDIA
Tidak ada ulasan pada koleksi ini: 9999920532857
 Abstrak
This article discusses the development of the online sequential circular extreme learning machine (OS-CELM) and structural tolerance OS-CELM (STOS-CELM). OS-CELM is developed based on the circular extreme learning machine (CELM) to enable sequential learning. It can update a new chunk of data by spending less training time to update the chunk than the batch CELM. STOS-CELM is developed based on an idea similar to that of OS-CELM, but with a Householder block exact inverse QR decomposition (QRD) recursive least squares (QRD-RLS) algorithm to allow sequential learning and mitigate the criticality of deciding the number of hidden nodes. In addition, our experiments have shown that given the same hidden node setting, STOS-CELM can deliver accuracy comparable to a batch CELM approach and also has higher accuracy than the original online sequential extreme learning machine (OS-ELM) and structural tolerance OS-ELM (STOS-ELM) in classification problems, especially those involving high dimension datasets.