:: Artikel Jurnal :: Kembali

Artikel Jurnal :: Kembali

Sin activation structural tolerance of online sequential circular extreme learning machine

Tatpong Katanyukul (Faculty of Engineering, Universitas Indonesia, 2017)

 Abstrak

This article discusses the development of the online sequential circular extreme learning machine (OS-CELM) and structural tolerance OS-CELM (STOS-CELM). OS-CELM is developed based on the circular extreme learning machine (CELM) to enable sequential learning. It can update a new chunk of data by spending less training time to update the chunk than the batch CELM. STOS-CELM is developed based on an idea similar to that of OS-CELM, but with a Householder block exact inverse QR decomposition (QRD) recursive least squares (QRD-RLS) algorithm to allow sequential learning and mitigate the criticality of deciding the number of hidden nodes. In addition, our experiments have shown that given the same hidden node setting, STOS-CELM can deliver accuracy comparable to a batch CELM approach and also has higher accuracy than the original online sequential extreme learning machine (OS-ELM) and structural tolerance OS-ELM (STOS-ELM) in classification problems, especially those involving high dimension datasets.

 Metadata

No. Panggil : UI-IJTECH 8:4 (2017)
Entri utama-Nama orang :
Subjek :
Penerbitan : Depok: Faculty of Engineering, Universitas Indonesia, 2017
Sumber Pengatalogan : LibUI eng rda
ISSN : 20869614
Majalah/Jurnal : International Journal of Technology
Volume : Vol. 8, No. 4, July 2017: Hal. 601-610
Tipe Konten : text
Tipe Media : unmediated
Tipe Carrier : volume
Akses Elektronik : https://doi.org/10.14716/ijtech.v8i4.9476
Institusi Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 4 R. Koleksi Jurnal
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
UI-IJTECH 8:4 (2017) 08-23-03114452 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920532857