Model Integrasi Gene Expression dan Ontology Untuk Prediksi Protein-Protein Interaction Human Immunodeficiency Virus Pada Manusia Menggunakan Bayesian Network = Gene Expression and Ontology Integration Model for Predict Human Immunodeficiency Virus of Human Protein-Protein Interaction
Jullend Gatc;
Ito Wasito, supervisor; Wahyu Catur Wibowo, examiner; Manurung, Hisar Maruli, examiner; Denny Setiawan, examiner
(Fakultas Ilmu Komputer Universitas Indonesia, 2013)
|
Human Immunodeficiency Virus (HIV) merupakan salah satu virus paling mematikan yang merusak sistem imun manusia melalui interaksi antar protein (PPI). Oleh karena itu, diperlukan suatu metode prediksi yang dapat melihat secara luas interaksi antar protein. Integrasi dari berbagai jenis data yang berbeda merupakan salah satu pendekatan untuk melihat interaksi protein secara luas. Dalam penelitian ini dibangun metode untuk prediksi PPI dengan mengintegrasikan gene expression dan ontology menggunakan Bayesian Network. Langkah pertama pada proses integrasi ini yaitu mencari nilai likelihood ratio berdasarkan evidence berupa nilai probabilistik PPI pada masing-masing dataset. Dimana likelihood ratio diperoleh dari kombinasi evidence menggunakan Bayesian Network. Kemudian hasil prediksi yang diperoleh diverifikasi menggunakan database NIAID sebagai Gold-Standard. Dari hasil keseluruhan eksperimen, model yang dibangun ini dievaluasi menggunakan Positive Predictive Value (PPV) dan memperoleh presisi mencapai 85.07%. .Human Immunodeficiency Virus (HIV) is one of the most deadly virus that could damage the human immune system through protein interaction (PPI). Therefore, the extremely prediction method that determine interactions between proteins extensively is required. The integration of different data is one of the approaches to look at the proteins interactions. In this research, a prediction model of PPI by integrating gene expression and gene ontology using Bayesian Networks will be developed. The first step in the integration process is to find the value of likelihood ratio based on evidence from each dataset. Furthermore the likelihood ratio is obtained from a combination of evidence using Bayesian Networks. Finally, the prediction results will be verified using a database of NIAID as Gold-Standard. Overall, we use PPV as an evaluation method which achieve precision around 85.07%. |
T-Jullend Gatc.pdf :: Unduh
|
No. Panggil : | T-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xv, 87 pages : illustration + appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
T-pdf | 15-23-61939587 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 9999920535341 |