Tantangan utama dari proses komunikasi antara pasien dan perawat adalah adanya ketidakmampuan beberapa pasien untuk menjelaskan secara verbal, seperti pasien dengan gangguan bicara atau juga pasien yang sedang kritis, sehingga diperlukan Bahasa Isyarat. Penelitian ini menggunakan pembelajaran mesin dengan model SSD MobilenetV2 untuk melatih isyarat tangan dan mengimplementasikan pengiriman pesan ke telegram. Isyarat tangan yang digunakan adalah: bantuan, dingin, dokter, duduk, makan, minum, obat, sakit, dan toilet. Pada penelitian ini digunakan data latih sebanyak 8.820 data dan data uji sebanyak 2.520 dan 1.260 data yang masing-masing merupakan data validasi dan data testing. Data tersebut diambil dari 14 orang dengan kategori Anak-anak hingga Lansia. Seluruh isyarat tangan dapat dideteksi dengan mAP sebesar 60.9%. Penelitian ini juga dapat mengenali isyarat secara langsung dengan baik pada jarak antara 0.5 m-1.2 m, dan dapat langsung mengirimkan pesan ke telegram sesuai dengan isyarat yang diperagakan. The use of hand signals is common in medical settings, but of course there are limitations between patients and caregivers who do not understand sign language. As technology advances, this problem can be minimized by creating messaging systems that take input in the form of sign language and output in the form of the message the patient wants to convey, as was done in this study. This study used 9 hand gesture; help, cold, sit, doctor, eat, drink, medicine, sick, and toilet. And used 8,820 training data and 2,520 and 1,260 test data for data validation and testing, respectively. The data comes from his 14 people, with categories ranging from children to elderly people. All hand gestures can be recognized with an mAP (mean Average Precision) of 60.9%. This study can also recognize live gestures well at a distance between 0.5 m - 1.2 m, and can directly send messages to telegrams according to the gestures demonstrated. |