:: UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Penilaian Citra Embrio Manusia dengan Convolutional Neural Network dan Generative Adversarial Network untuk Augmentasi Data = Assessment of Human Embryo Image with Convolutional Neural Network and Generative Adversarial Network for Data Augmentation

Rusnanda Farhan; Wisnu Jatmiko, supervisor; Devi Yulianti, examiner; Lim Yohanes Stefanus, examiner; Adila Alfa Krisnadhi, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2023)

 Abstrak

Penilaian citra embrio manusia memiliki peran yang penting dalam proses Fertilisasi In Vitro (FIV) atau yang dikenal juga sebagai proses bayi tabung. Penilaian citra embrio ini dilakukan secara manual oleh ahli embriologi. Hal ini tentunya membutuhkan waktu yang lama dan konsentrasi yang tinggi dari ahli embriologi sehingga perlu ada sistem yang dapat membantu ahli embriologi dalam melakukan penilaian dengan lebih efisien. Salah satu waktu penilaian embrio yang paling penting yaitu ketika embrio berusia lima hari, dimana ini merupakan tahap penilaian akhir sebelum proses implantasi ke rahim. Penilaian embrio pada hari kelima didasarkan pada tiga aspek yaitu derajat ekspansi, Inner Cell Mass, dan Trophoectoderm, yang menjadi tantangan tersendiri dalam penelitian di bidang ini. Permasalahan lain yang muncul yaitu ketersediaan data yang terbatas dan ketidakseimbangan proporsi kelas atau target pada dataset. Penelitian ini mengusulkan penggunaan augmentasi data berbasis Generative Adversarial Network seperti VanillaGAN, InfoGAN, DCGAN, dan Adversarial Autoencoder sehagai solusi permasalahan ketidakseimbangan data. Penelitian ini juga mengembangkan model klasifikasi berbasis Convolutional Neural Network sebagai klasifikator untuk menilai citra embrio. Penelititan ini menggunakan 10-fold cross validation untuk mengukur kinerja model. Untuk kategori derajat ekspansi, penelitian ini memperoleh hasil terbaik dengan model Convolutional Neural Network yang dikombinasikan dengan Adversarial Autoencoder sebagai augmentasi data dengan nilai f1-score sebesar 0.92. Untuk kategori Inner Cell Mass, penelitian ini memperoleh hasil terbaik dengan model Convolutional Neural Network yang dikombinasikan dengan VanillaGAN sebagai augmentasi data dengan nilai f1-score sebesar 0.92. Serta untuk kategori Trophoectoderm, model Convolutional Neural Network yang dikombinasikan dengan Adversarial Autoencoder memperoleh hasil terbaik dengan nilai f1-score sebesar 0.89.

Assessment of human embryo images has an important role in the process of In Vitro Fertilization (IVF). Evaluation of this embryo image is done manually by the embryologist. This requires a long time and high concentration of embryologists, so it is necessary to create a system that can assist embryologists in making assessments more efficiently. One of the most important parts of human embryo assessment is the embryo on the fifth day after fertilization. Evaluation of embryos on the fifth day is based on three aspects, namely the degree of expansion, Inner Cell Mass, and Trophoectoderm, which is a particular challenge in research in this field. Another problem for this case is the limited availability of data and an imbalanced dataset. This study proposes the use of Generative Adversarial Network-based for data augmentation such as VanillaGAN, InfoGAN, DCGAN, and Adversarial Autoencoder as a solution to imbalanced data problems. This study also developed a classification model based on the Convolutional Neural Network as a classifier for assessing embryo images. This research uses 10-fold cross validation to measure model performance. This study obtained the best results for the degree of expansion category with the Convolutional Neural Network model combined with the Adversarial Autoencoder as a data augmentation with an f1-score of 0.92. This study obtained the best results for the Inner Cell Mass category with the Convolutional Neural Network model combined with VanillaGAN as a data augmentation with an f1-score of 0.92. The best result for Trophoectoderm category is Convolutional Neural Network model combined with the Adversarial Autoencoder as a data augmentation with an f1-score of 0.89.

 File Digital: 1

Shelf
 T-Rusnanda Farhan.pdf :: Unduh

LOGIN required

 Metadata

No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
Program Studi :
Bahasa : ind
Sumber Pengatalogan : LIbUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 67 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
T-pdf 15-24-05350278 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920542589