Friksi yang tidak dikendalikan pada mesin dapat mengakibatkan keausan yang tinggi, menyebabkan maintenance yang sering, dan membuat umur pendek serta memiliki efisiensi energi yang rendah. Lubrikasi merupakan solusi untuk masalah ini dengan membentuk lapisan pelumas yang mencegah kontak langsung antara permukaan material, mengurangi gesekan dan keausan pada mesin. Material nanopartikel timah oksida dan graphene digunakan sebagai aditif pada lubrikan PAO karena masing-masing material sudah menunjukkan performa yang baik dalam menurunkan coefficient of friction (COF) dan wear scar dimension (WSD) pada minyak PAO. Selain itu usaha pemanfaatan SnO2 dilakukan guna memaksimalkan hilirasi tambang dan industri timah dengan usaha pengolahan limbah solder dross. Sintesis SnOâ dilakukan dari limbah solder dross menggunakan metode leaching dengan asam nitrat berkonsentrasi 68%. Hasil sintesis menunjukkan kemurnian SnOâ sebesar 98.4%. Karakterisasi XRD mengindikasikan fase kristal rutile dengan ukuran kristal sekitar 21.7 nm. SEM-EDS mengungkapkan partikel SnOâ berukuran rata-rata 198.5 nm² yang cenderung beraglomerasi. Graphene yang digunakan menunjukkan kemurnian tinggi dengan kandungan karbon 99.4% berdasarkan berat. Pengujian HFRR dilakukan untuk menilai kinerja tribologi dari berbagai sampel pelumas. Penambahan 0.05 wt% graphene dan variasi konsentrasi SnOâ (1 wt%, 3 wt%, dan 5 wt%) secara signifikan menurunkan COF dan WSD dibandingkan dengan PAO murni. Penambahan 1 wt% SnOâ dan 0.05 wt% graphene memberikan hasil paling optimal dengan penurunan COF sebesar 44.59% dan WSD sebesar 71.53% dibandingkan PAO murni. Uncontrolled friction in machinery can lead to high wear, frequent maintenance, short lifespan, and low energy efficiency. Lubrication addresses these issues by forming a lubricating layer that prevents direct contact between material surfaces, reducing friction and wear. Tin oxide nanoparticles and graphene are used as additives in PAO lubricants due to their proven performance in reducing the coefficient of friction (COF) and wear scar dimension (WSD) in PAO oil. Additionally, the utilization of SnOâ aims to optimize downstream mining and the tin industry by processing solder dross waste. SnOâ was synthesized from solder dross waste using a leaching method with 68% nitric acid. The synthesis resulted in SnOâ with a purity of 98.4%. XRD characterization indicated a rutile crystal phase with a crystal size of approximately 21.7 nm. SEM-EDS revealed SnOâ particles with an average size of 198.5 nm², which tended to agglomerate. The graphene used exhibited high purity with a carbon content of 99.4% by weight. HFRR testing was conducted to evaluate the tribological performance of various lubricant samples. The addition of 0.05 wt% graphene and varying concentrations of SnOâ (1 wt%, 3 wt%, and 5 wt%) significantly reduced COF and WSD compared to pure PAO. The optimal results were achieved with the addition of 1 wt% SnOâ and 0.05 wt% graphene, resulting in a 44.59% reduction in COF and a 71.53% reduction in WSD compared to pure PAO. |