Penelitian ini mengevaluasi performa algoritma dekomposisi LU dengan batasan serta metode iterasi Conjugate Gradient Method (CGM) dalam menentukan konduktivitas termal aluminium dan besi menggunakan metode Inverse Heat Conduction Problem (IHCP). IHCP digunakan untuk menyelesaikan masalah konduksi panas dengan menentukan parameter yang tidak diketahui seperti kondisi batas dan konduktivitas termal bergantung pada temperatur. Algoritma dekomposisi LU dengan batasan diimplementasikan dalam IHCP 2D untuk mengoptimalkan perhitungan distribusi temperatur. Simulasi pada pelat aluminium menunjukkan kesalahan absolut maksimum 1,22%, sementara eksperimen dengan isolasi penuh menunjukkan 1,83%. Prediksi konduktivitas termal menggunakan tembakan 10, 50, dan 100 W/mK menghasilkan nilai konduktivitas aluminium antara 233,693 hingga 240,659 W/mK dengan kesalahan maksimum 1,83%, dan besi antara 78,84 hingga 80,38 W/mK dengan kesalahan maksimum 1,74%. Kesimpulannya, variasi material, nilai konduktivitas termal, fluks panas, dan kondisi sistem tidak berdampak signifikan pada prediksi konduktivitas termal. Peningkatan peralatan uji dan metode pengukuran yang lebih akurat diperlukan untuk aplikasi praktis. This study aims to evaluate the performance of the LU decomposition algorithm with constraints and the Conjugate Gradient Method (CGM) iteration in determining the thermal conductivity of aluminum and iron materials using the Inverse Heat Conduction Problem (IHCP) method. IHCP is applied to solve heat conduction problems, determining unknown parameters such as boundary conditions and temperature-dependent thermal conductivity. In this research, the LU decomposition algorithm with constraints was implemented in a 2D IHCP to optimize forward calculations for temperature distribution. Simulations on aluminum plates showed a maximum absolute error of 1.22%, while experiments with full insulation showed 1.83%. Thermal conductivity prediction using shots of 10, 50, and 100 W/mK revealed values for aluminum ranging from 233.693 to 240.659 W/mK with a maximum error of 1.83%, and for iron from 78.84 to 80.38 W/mK with a maximum error of 1.74%. The study concludes that material variation, thermal conductivity values, heat flux, and system conditions do not significantly impact thermal conductivity prediction. Therefore, more accurate testing equipment and measurement methods are necessary for practical applications. |