Pneumonia merupakan salah satu penyakit infeksi saluran napas bawah akut (ISNBA) yang disebabkan oleh mikroorganisme seperti bakteri, virus, dan jamur. Pada tahun 2017, penyakit menular pneumonia menjadi penyebab kematian terbesar pada anak-anak di bawah usia lima tahun. Berdasarkan klasifikasi pengobatan pneumonia, secara garis besar pengobatan dibagi atas rawat jalan dan rawat inap. Pemodelan matematika merupakan salah satu cara dalam merepresentasikan suatu masalah di dunia nyata ke dalam bentuk sistem persamaan matematika. Pada penelitian ini, dibahas mengenai pengembangan model matematika penyakit pneumonia dengan faktor vaksinasi. Model dibentuk dengan membagi populasi berdasarkan status kesehatannya. Kemudian, dilakukan kajian analitik yang meliputi analisis eksistensi serta kestabilan dari titik-titik keseimbangannya dan hubungannya dengan bilangan reproduksi dasar (â0). Setelah itu, dilakukan simulasi numerik yang mencakup analisis sensitivitas dan elastisitas â0 serta simulasi autonomous dari model. Dari kajian yang dilakukan dalam skripsi ini, diharapkan dapat dipahami bagaimana pengaruh faktor vaksinasi dan pengobatan dalam pengendalian pneumonia. Lebih jauh, kajian analitis dan numerik mengenai titik keseimbangan bebas penyakit, titik keseimbangan endemik, dan basic reproduction number (â0) dilakukan untuk memahami dinamika jangka panjang dari model yang telah dikonstruksi. Dari hasil kajian analitis dan numerik tersebut, dapat dikatakan bahwa intervensi vaksinasi dan pengobatan merupakan beberapa cara efektif untuk mengurangi penyebaran penyakit pneumonia. Pneumonia is one of the acute lower airway infections (ISNBA) caused by microorganisms such as bacteria, viruses, and fungi. In 2017, infectious disease pneumonia became the leading cause of death in children under the age of five. Based on the classification of pneumonia treatment, the outline of treatment is divided over outpatient and inpatient treatment. Mathematical modeling is one way of representing a problem in the real world into the form of a system of mathematical equations. In this study, discussed the development of mathematical models of pneumonia with vaccination factors. Models are formed by dividing populations based on their health status. Then, an analytical study is conducted which includes the analysis of the existence and stability of the points of balance and their relationship with basic reproduction number (â0). After that, a numerical simulation was conducted that included an analysis of sensitivity and elasticity of â0 as well as an autonomous simulation of the model. From the studies conducted in this thesis, it is expected to be understood how the influence of vaccination and treatment factors in the control of pneumonia. Furthermore, analytical and numerical studies of diseasefree equilibrium points, endemic balance points, and basic reproduction number (â0) is done to understand the long-term dynamics of the constructed model. From the results of these analytical and numerical studies, it can be said that vaccination and treatment interventions are some effective ways to reduce the spread of pneumonia. |