Klasifikasi Varietas dan Kualitas Biji Kopi dengan Citra Multispektral menggunakan Analisis Convolutional Neural Network (CNN) dengan Model Resnet18 = Classification for Variety and Quality of Coffee Beans with Multispectral Imaging using Convolutional Neural Network (CNN) Analysis with ResNet18 Model
Jason Albert Natanael;
Adhi Harmoko Saputro, supervisor; Arief Sudarmaji, examiner; Surya Darma, examiner
(Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024)
|
Kopi telah menjadi komoditas ekspor non migas yang memberikan kontribusi terhadap devisa negara dalam jumlah yang tidak sedikit. Nilai ekspor kopi sendiri pada kancah internasional bergantung kepada 2 faktor utama, yaitu jenis atau varietas biji kopi dan tingkat kelayakan atau kualitas dari biji kopi. Upaya untuk mengklasifikasikan kedua faktor tersebut masih cenderung dilakukan secara manual oleh para petani kopi. Atas pertimbangan inilah, penulis hendak menggunakan metode lain, yakni penggunaan model CNN (Convolutional Neural Network) dengan basis masukan berupa citra normal (spektrum RGB) dan citra multispektral (spektrum OCN). Selain itu, penulis juga hendak membandingkan performa dari 2 arsitektur model CNN yang berbeda, yakni ResNet18 terhadap SqueezeNet. Input dari kedua arsitektur ini berupa kombinasi dari citra normal, citra multispektral, atau citra yang telah diregistrasikan (1 citra dengan 6 channel berbeda). Hasil akurasi tertinggi dicapai oleh arsitektur ResNet18 dengan input citra normal (RGB) yang memberikan akurasi sebesar 89% untuk klasifikasi varietas biji kopi hijau, serta 97% untuk klasifikasi tingkatan kualitas biji kopi. Meski demikian, arsitektur ini mampu untuk melakukan klasifikasi multi-output secara bersamaan walaupun terdapat sedikit pengurangan pada tingkat akurasi yang didapatkan. Coffee has become one of the non-oil and gas export commodity, providing numerous amount of Indonesia’s foreign income. Within the international market, the export value of coffee beans rely on 2 aspects, its variety and its quality. The attempts to classify coffee beans are done manually by the farmers. Therefore, the writer attempts to design a new method, using convolutional neural networks with normal (RGB spectrum image) and multispectral images (OCN spectrum image) as its inputs. The writer also wishes to analyze and compare 2 different CNN architectures performance in this case; ResNet18 towards SqueezeNet. Considering the combination of the inputs; normal images, multispectral images, or the registered images (images with 6 different channels). The highest accuracy acquired from the ResNet18 CNN model architecture using normal images (RGB) is as following: 86% for green coffee beans varieties classification, and 96% for green coffee beans. These architectures are also capable of performing multi-class output classification despite the trade-off in accuracy gained. |
S-Jason Albert Natanael.pdf :: Unduh
|
No. Panggil : | S-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024 |
Program Studi : |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xv, 75 pages : illustration |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-pdf | 14-24-42628149 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 9999920549378 |