Padi mempunyai peran penting dalam menjamin ketahanan pangan di Indonesia, sehingga penelitian terkait lahan sawah sangat penting. Identifikasi lahan sawah dari data penginderaan jauh dengan akurasi yang tinggi di wilayah tropik Indonesia merupakan tantangan penelitian. Metode yang paling akurat untuk identifikasi lahan sawah adalah dengan menggunakan pendekatan fenologi dan integrasi data multi-sumber. Namun, pendekatan ini tidak mempertimbangkan karakteristik spektral dan temporal yang rinci. Penelitian ini mengusulkan penggabungan semua fitur spektral dan fitur temporal yang rinci dengan mempertimbangkan periode musim tanam padi dari data sensor optik Sentinel-2 dan sensor SAR Sentinel-1 dengan tujuan mendapatkan klasifikasi lahan sawah dengan akurasi tinggi. Metode identifikasi lahan sawah dalam penelitian ini meliputi pengolahan awal, ekstraksi fitur temporal dengan kuantil rinci, seleksi fitur spektro-temporal dengan menggunakan Leave-One-Out (LOO), fusi fitur dan klasifikasi dengan algoritma machine learning. Hasil penelitian menunjukkan bahwa klasifikasi lahan sawah terbaik adalah dengan menggunakan periode tanam pada musim hujan. Fitur spektral dan temporal (spektro-temporal) terbaik untuk data optik adalah kuantil 30% dan 90% dari Short Wave Infra-Red-1 (SWIR1), RedEdge-4 (RE4), RedEdge-1 (RE1), dan RedEdge-2 (RE2). Fitur spektro-temporal terbaik untuk data SAR adalah kuantil 10% dan 90% dari hamburan balik polarisasi vertical transmit - horizontal receive (VH). Hasil fitur yang dipilih menggambarkan fenologi pertumbuhan padi selama penggenangan, maksimum vegetatif dan bera (pasca panen). Penggabungan fitur spektro-temporal dari data optik dan SAR meningkatkan akurasi klasifikasi menjadi 95,06±0,50%. Rice plays an important role in ensuring food security in Indonesia. Therefore, paddy fields related research is important. Identifying paddy fields with high accuracy using remote sensing is a challenging in Indonesia. The most accurate method for paddy fields identification is using phenological approach and multi-source data integration. However, these approaches do not consider the comprehensive spectral and temporal characteristic data in tropical regions. This research proposed the fusion of all spectral and detailed statistical temporal features considering the period of the paddy growing season from Sentinel-2 optical and Sentinel-1 SAR data to achieve a high accuracy paddy fields classification. The paddy fields identification method in this research starts with preprocessing, temporal feature extraction using detail quantile, spektro-temporal fetaure selection using Leave-One-Out (LOO), feature fusion, and then applied machine learning classification algorithm. The results show that the best paddy fields classification is using the planting period during the rainy season. The best spectral and temporal (spectro-temporal) features for optical data are the 30% and 90% quantiles of Short Wave Infra-Red 1 (SWIR1), RedEdge-4 (RE4), RedEdge-1 (RE1), and RedEdge-2 (RE2). The best spectro-temporal features for SAR data are the 10% and 90% quantiles of VH backscatter. The selected feature results describe the phenology of paddy growth during flooding, maximum vegetative and bare land (post-harvest). The spectro-temporal features fusion of optical and SAR data increased the classification accuracy to 95,06±0,50%. |