Abstract
Prediksi vessel turnaround time (VTT) di pelabuhan merupakan langkah strategis untuk meningkatkan efisiensi operasional dan mendukung pengambilan keputusan berbasis data. Penelitian ini berfokus pada rancang bangun sistem prediksi berbasis machine learning untuk memperkirakan durasi waktu tunggu kapal, melalui pengembangan model regresi dengan pendekatan yang sistematis. Model dirancang dan dievaluasi dengan membandingkan rentang data historis (5 tahun vs 10 tahun), dua metode seleksi fitur?RFE (Recursive Feature Elimination) dan SHAP (SHapley Additive exPlanations)?serta penerapan hyperparameter tuning untuk mengoptimalkan performa.
Evaluasi dilakukan secara menyeluruh menggunakan 50 variasi model seed dan pendekatan rolling time window. Hasil menunjukkan bahwa penggunaan dataset 10 tahun dan model LightGBM memberikan performa terbaik dengan RMSE validasi sebesar 2.7882 jam. SHAP menghasilkan performa hampir setara dengan RFE meskipun menggunakan jumlah fitur yang lebih sedikit. Setelah proses tuning, sistem prediktif yang dirancang menjadi jauh lebih stabil antar pengulangan (RMSE validasi: 2.7865, IQR RMSE: 0.0099), dan tetap menunjukkan hasil yang baik pada data uji serta evaluasi lintas waktu. Secara keseluruhan, rancang bangun sistem prediksi VTT ini membuktikan bahwa kombinasi data historis yang memadai, pemilihan fitur yang tepat, dan pengaturan parameter yang optimal mampu menghasilkan model yang akurat, konsisten, dan siap diterapkan dalam operasional pelabuhan secara nyata.
......Predicting vessel turnaround time (VTT) at ports is a strategic effort to improve operational efficiency and support data-driven decision-making. This study focuses on the design and development of a predictive system based on machine learning to estimate vessel waiting durations, through a systematic approach to regression model construction. The models are designed and evaluated by comparing different historical data ranges (5 years vs. 10 years), two feature selection methods?RFE (Recursive Feature Elimination) and SHAP (SHapley Additive exPlanations)?as well as the implementation of hyperparameter tuning to optimize performance.
Comprehensive evaluation was carried out using 50 model seed variations and a rolling time window approach. The results show that the use of a 10-year dataset and the LightGBM model achieved the best performance, with a validation RMSE of 2.7882 hours. SHAP yielded nearly comparable performance to RFE, despite using fewer features. After tuning, the predictive system became significantly more stable across repetitions (validation RMSE: 2.7865, IQR RMSE: 0.0099), and consistently produced reliable results on the test set as well as in various time-based evaluation windows. Overall, this predictive system design for VTT demonstrates that the combination of sufficient historical data, appropriate feature selection, and optimal parameter configuration can produce a model that is accurate, robust, and ready for real-world port operations.