UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Biotransformasi isoflavon oleh rhizopus oryzae uicc 524 dan rhizopus mirosporus var chinensis uicc 521 pada fermentasi tempe dan aktivitas antioksidan isoflavon aglikon terhadap oksidasi minyak kedelai

Tjahjadi Purwoko; Suyanto Pawiroharsono, supervisor (Universitas Indonesia, 2001)

 Abstrak

Thesis Supervisors: Dr. Suyanto Pawiroharsono; Prof. Dr. Indrawati Gandjar
SUMMARY
Food deterioration is often due to lipid oxidation, excluding bacterial and
enzymatic spoilage. The end-products of lipid oxidation, such as aldehydes,
ketones, and alcohols are responsible for unacceptable off-tiavors and off-
odors in food. Lipid oxidation can be inhibited by antioxidants.
Soybean tempe is the most popular indigenous fermented food in
Indonesia. Soybeans are known to contain isotiavones. Four major forms are
known respectively as acetylglycosides, malonylglycosides, glycosides, and
aglycones.
Tempe were produced from soybean fermentation by Rhizopus oryzae
UICC 524 and Rhizopus microsporus var. chinensis UICC 521. The tempe
samples were extracted with methanol and the extraction defatted with hexa»
ne. The isoflavone aglycones were isolated using column chromatography,
and then anaiyzed using a gradient elution reverse phase of high-pressure
liquid chromatography (HPLC). After HPLC analysis, isotiavone aglycones
were evaporated to dryness and added to soybean oil at the 100, 200, 300,
iii ' and 400-ppm concentration in test tubes, then heated at 170°C for 30 minu-
tes. The oxidation of soybean oil was measured using the thiobarbituric acid
(TBA) test. The result, called thiobarbituric acid reactive substances
(TBARS) value, was expressed as pmolll and compared to the synthetic
antioxidant, buthylated hidroxytoluene (BHT), at the same concentration.
The profile of isoflavone aglycones isolated contains daidzein and
genistein. No factor-2 (6,7,4'-trihidroxyisoflavone) and glycitein were detec-
ted. Daidzein resulted from biotransformation of daidzin was dominant in
both tempe samples. The isoflavone biotransformation was much greater by
R. microsporus var. chinensis UICC 521 than by R. oryzae UICC 524, except
for the 24 hours incubation. After 72 hours of incubation, the total isoflavone
aglycones in tempe using R. microsporus var. chfnensis UICC 521 was
721.6 pglg and when using R. oryzae UICC 524, 268.2 p.glg.
The oxidized soybean oil without any antioxidants had a TBARS value of
327.32 1 20.31 pmol/1. Addition of the antioxidants showed a decreased
TBARS value following increasing concentration for both. For concentration
until 300 ppm, the TBARS values of oxidized soybean oil added with isofla-
vone aglycones were greater than when added with BHT, respectively
55.40 zl: 2.77 pmol!! and 45.20 i 2.63 pmolll. However at concentration of
400 ppm, the TBARS values of oxidized soybean oil added with isoftavone
aglycones and added with BHT did not show a significant difference.
ix + -51 pp; 6 append; 5 plates; 3 tables.
Bilb 35 (1964-1999).
iv

 File Digital: 1

Shelf
 T5748-Biotransformasi.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T5748
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: Universitas Indonesia, 2001
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resources
Deskripsi Fisik : ix, 51 pages: illustration; 28 cm
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T5748 15-19-519883996 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 96555
Cover