Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 39077 dokumen yang sesuai dengan query
cover
Nurul Hikmah
"Identifikasi retina merupakan metode identifikasi biometrik dengan tingkat kesalahan rendah melalui pola-pola unik pembuluh darah di bagian belakang retina. Pola-pola ini dapat digunakan sebagai data latih logika neuro fuzzy untuk kemudian digunakan sebagai pembanding pada saat identifikasi dilakukan.
Penelitian ini bertujuan untuk mengenali citra retina mata manusia, baik bagian kiri maupun kanan, menggunakan teknik pengolahan citra dan Adaptive Neuro Fuzzy Inference System (ANFIS). Pada proses pengenalan retina ini, citra digital yang sudah diakuisisi akan dicrop dan dibagi menjadi image block berukuran 4x4. Kemudian blok citra dikonversi dari format Red Green Blue (RGB) menjadi format Hue Saturation Value (HSV). Untuk mendapatkan parameter fitur warna HSV, setiap komponen warna HSV dihitung nilai rata-ratanya. Nilai rata-rata HSV dimasukkan ke dalam database dan dilatih dengan ANFIS yang terdiri atas 2 jenis membership function, yaitu Gaussian dan Trapesium dengan 3 input dan 1 ouput.
Dari hasil uji coba, hasil identifikasi memiliki tingkat akurasi hingga 65% untuk membership function Trapesium dan 80% untuk membership function Gaussian dengan 60 kali pelatihan ANFIS.

Retina identification is a biometric identification method which has very low error rate using a unique blood vessel pattern in the back of the retina. The identification involved an infrared scanned retina imagery which is analyzed using image processing technique to derive the color characteristics and then trained into the Adaptive Neuro Fuzzy Inference System (ANFIS).
The objective of this research to identify a person?s identity from his/her retina image. The identification process is started by cropping the digital retina image then transformed into an 4x4 image block. The image block is then converted from Red Green Blue (RGB) color format to the Hue Saturation Value (HSV) format. Each color component of HSV values is then averaged, saved to a database and trained using ANFIS. The Neuro fuzzy used Gaussian and Trapezoid membership function which have 3 input and 1 ouput, respectively.
The simulation results showed the identification system has an accuracy rate up to 65% and up to 80%, for Trapezoid and Gaussian membership function, respectively. This results are achieved using 60 training data in the ANFIS."
2008
S40478
UI - Skripsi Open  Universitas Indonesia Library
cover
Dwi Kris Setianto
"Tugas akhir ini dilakukan sebagai penelitian untuk menganalisa proses pengenalan iris mata manusia dengan teknik pengolahan citra menggunakan metode adaptive neuro-fuzzy inference system (ANFIS). Hal ini didasarkan pada teori bahwa setiap iris mata manusia mempunyai bagian-bagian yang unik dan berbeda antara iris yang satu dengan yang lain. Data iris yang digunakan dalam penulisan tugas akhir ini diambil dari http://pesona.mmu.edu.my/~ccteo/. Data yang didapat sudah dalam grayscale dengan demikian dari data tersebut sudah dapat diolah dengan pengolahan selanjutnya dengan menentukan region of interest, mengubah koordinat citra dari koordinat kartesian menjadi koordinat polar, mengekstrak citra menjadi 3 bagian dan membuat blok-blok dari matriks tersebut, kemudian mengkodekan dengan filter wavelet. Dari hasil pengkodean ini didapat tiga buah parameter yaitu matriks diagonal, matriks vertikal, dan matriks horisontal. Dari ketiga parameter ini diambil nilai rata-ratanya dan hasilnya digunakan untuk pembentukan database yang kemudian digunakan untuk proses pelatihan, pengujian, dan pengecekan pada adaptive neuro-fuzzy inference system dengan menggunakan fungsi keanggotaan gaussian dan metode subtractive clustering. Hasil yang diadapat dari metode ini untuk citra mata yang telah dilatih sebesar 90% sedangkan untuk data uji atau citra yang tidak dilatih sebesar 25%.

This paper was made for studying identification proccess of human iris with image processing using adaptive neuro-fuzzy inference system (ANFIS) methode. The study based on the theory that every human iris have unique parts. Data that used in this paper taken from http://pesona.mmu.edu.my/~ccteo/. Data format in grayscale level therefore this data could be proccess with the further processing decisively region of interest, transform from rectangular coordinate to polar coordinate, extracted the image to 3 parts and made blocs from this matrix, afterwards encode the matrix using wavelet filter. From the results of this coding was gotten three parameters that is the diagonal matrix, the vertical matrix, and the horizontal matrix. From the three parameters was taken average value and results was used for database formation, afterwards was used for training process, testing, and checking in adaptive neuro-fuzzy inference system used the function of the gaussian membership and subtractive clustering methode. The result for his method 90% for image that was trained and 25% for test data or image that was not trained."
2008
S40591
UI - Skripsi Open  Universitas Indonesia Library
cover
Hajratul Hasanah
"

Demam Berdarah Dengue (DBD) merupakan penyakit yang banyak ditemukan di sebagian besar wilayah tropis dan subtropis. DBD merupakan penyakit infeksi yang disebabkan oleh virus dengue yang termasuk ke dalam family flaviviridae dan genus flavivirus yang ditularkan ke manusia melalui gigitan nyamuk Aedes aegypti dan Aedes albopicus dengan masa inkubasi intrinsik 3 sampai 14 hari, dan inkubasi ekstrinsik 8 sampai 10 hari. Dalam 3 tahun terakhir, jumlah penderita DBD di DKI Jakarta menduduki jumlah tertinggi yang mencapai 813 jiwa pada tahun 2019. Pada tugas akhir ini, dibahas pembuatan model Adaptive Neuro-Fuzzy Inference System (ANFIS) untuk memprediksi jumlah insiden DBD di DKI Jakarta menggunakan data jumlah insiden DBD pada setiap wilayah di DKI Jakarta tahun 2009 sampai 2017. Hasil simulasi dari model Adaptive Neuro-Fuzzy Inference System dibandingkan dengan hasil model Artificial Neural Network (ANN) dan Ensemble ANN-ANFIS yang dievaluasi berdasarkan Root Mean Squared Error dan Mean Absolute Error. Pada tugas akhir ini, Adaptive Neuro-Fuzzy Inference System memiliki performa lebih baik dibandingkan Artificial Neural Network dan Ensemble ANN-ANFIS hampir seluruh daerah di DKI Jakarta.


Dengue Hemorrhagic Fever (DHF) is a disease that is found in most tropical and subtropical regions. DHF is a disease caused by dengue virus which belongs to the flaviviridae family and genus flavivirus which is transmitted to humans through the bite of Aedes aegypti and Aedes albopicus mosquitoes with an intrinsic incubation period of 3 to14 days, and extrinsic incubation period of 8 to 10 days. In the last 3 years, the number of DHF sufferers in DKI occupied the highest number, which reached 813 people in 2019. In this final project, we will discuss making an Adaptive Neuro-Fuzzy Inference System (ANFIS) model to predict the number of DHF reporting in DKI Jakarta using data on the number of DHF reporting in each region in DKI Jakarta from 2009 to 2017. Simulation result from the Adaptive Neuro-Fuzzy Inference System model are compared with the results of the Artificial Neural Network (ANN) model and the Ensemble ANN-ANFIS model, evaluated based on Root Mean Squared Error and Mean Absolute Error. In this final project, the Adaptive Neuro-Fuzzy Inference System has better performance than the Artificial Neural Network and Ensemble ANN-ANFIS in all regions in DKI Jakarta.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Titan Kemal Latif
"Pada masa sekarang ini perkembangan teknologi cenderung memiliki kemampuan untuk berpikir dan mengambil keputusan layaknya manusia. Salah satu dari banyak metode untuk mengembangkan teknologi yang cerdas adalah dengan menggunakan Adaptive Neuro Fuzyy Inference System. Penelitian ini dilakukan dengan menerapkan ANFIS tipe Sugeno pada data-data penelitian umum, seperti data tanaman iris dan data ionosphere, melihat efek perubahan parameter-parameter terhadap recognisinya, lalu melakukan ANFIS terhadap data citra wajah.

The technology nowadays tends to have abbility to think and to size up decision, just like us humans. One of the kind of method to enhance smart technology is by using Adaptive Neuro Fuzyy Inference System. This research is done by using ANFIS Sugeno type on general research data, such as iris plant data and ionosphere data, observing the effect of the changing parameter over the recognition, then using ANFIS on face image data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S47312
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budi Triantono
Depok: Fakultas Teknik Universitas Indonesia, 1999
S39053
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andry Sunandar
"Telah dilakukan penelitian terhadap pengembangan algoritma FNGLVQ sehingga memiliki karakteristik adaptif terhadap data input sehingga besaran perubahan vektor referensi memiliki besaran nilai yang adaptif. Karakteristik adaptif didapatkan dengan melakukan modifikasi terhadap perubahan update bobot dengan melakukan penurunan fungsi keanggotaan fuzzy tidak hanya terhadap parameter mean (yang dilakukan pada FNGLVQ awal) namun penurunan dilakukan terhadap kedua nilai min dan max sehingga besaran perubahan nilai min dan max akan bervariasi (tidak konstan seperti FNGLVQ) yang tergantung dari besaran input yang digunakan.
Karakteristik ini dapat meningkatkan akurasi dalam percobaan dalam ketiga jenis data, yakni data EKG Aritmia, data pengenalan Aroma dengan 3 campuran, serta data Sleep secara keseluruhan, namun perbedaan nilai akurasi terbesar didapatkan dari pengujian data pengenalan aroma 3 campuran. Pengembangan karakteristik adaptif terhadap algoritma FNGLVQ dilakukan dengan kedua jenis fungsi keanggotaan yakni fungsi keanggotaan segitiga dan fungsi keanggotaan PI, dan FNGLVQ adaptif dengan fungsi keanggotaan PI sedikit lebih baik dibandingkan FNGLVQ adaptif dengan fungsi keanggotaan segitiga.

This research has been conducted on the development of FNGLVQ algorithms which have adaptive characteristics to the input data so that the amount of change in the reference vector has a magnitude of adaptive value. Adaptive characteristics are obtained by modifying the update changes the weight by doing a fuzzy membership function derivation. This is not only performed on the parameters of the mean (which is done at the beginning FNGLVQ) but they are derivated to both min and max values so that the amount of change in the weight and is continued with min and max values will vary (not constant as in the case of FNGLVQ) which in turn depends on the amount of inputs used.
These characteristics may increase the accuracy of the experiment in all three types of data, including data Arrhythmia ECG, data recognition Aroma with 3 mix, as well as overall Sleep data, but the biggest difference is the accuracy of values which have obtained from the test for 3 mixed aroma data recognition. Development of adaptive characteristics of the algorithm FNGLVQ has been performed with both types of membership functions namely triangular membership functions and PI membership functions, and FNGLVQ PI adaptive membership functions has been found to be slightly better than FNGLVQ adaptive triangular membership functions.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aristia Reyhan Rafandi Betha
"Beragam kebutuhan industri, membuat jenis-jenis proses pada industri pengolahan menjadi beragam dengan berberapa parameter input dan output, salah satunya adalah proses thermal mixing yang menggunakan sistem multi input multi output. Thermal mixing atau continuous stirred-tank reactor mengendalikan 2 aliran dengan temperatur berbeda kedalam tanki pencampur sehingga mendapat temperatur dan ketinggian tangki sesuai yang diinginkan. pada penelitian ini telah dirancang sistem pengendali berbasis logika fuzzy pada pengendalian temperatur dan level. Penelitian ini sistem logika fuzzy menngunakan 2 input dan 1 output unutk masing-masing parameter pengendalian. 2 input fuzzy set menggunakan nilai error dan change of error. Setiap fuzzy set menngunakan 7 membership function yaitu negative big (NB), negative medium (NM), negative small (NS), zero (Z), positive small (PS), positive medium (PM), dan positive big (PB). Sistem dapat melakukan pengendalian temperatur dan level sesuai yang diinginkan. Sistem ini menggunakan simulasi berbasis aplikasi MATLAB Simulink. Berdasarkan hasil simulasi, dapat disumpulkan bahwa pengendalian menggunakan fuzzy logic controller lebih baik dibandingkan pengendalian PID. Hasil pengendalian fuzzy memiliki rata-rata rise time dan settling time yang lebih cepat dan tidak memiliki overshoot.

A variety of industrial needs, making the types of processes in the processing industry to be diverse with several input and output parameters, one of which is a thermal mixing process that uses a multi-input multi output system. Thermal mixing or continuous stirred-tank reactor controls 2 streams with different temperatures into the mixing tank so that the temperature and height of the tank are as desired. In this research a fuzzy logic based controller system has been designed for controlling temperature and level. This study uses a fuzzy logic system using 2 inputs and 1 output for each control parameter. 2 fuzzy input sets use error and change of error values. Each fuzzy set uses 7 membership functions, namely negative big (NB), negative medium (NM), negative small (NS), zero (Z), positive small (PS), positive medium (PM), and positive big (PB). The system can control the temperature and level as desired. This system uses a simulation based on the MATLAB Simulink application. Based on the simulation results, it can be concluded that the control using fuzzy logic controller is better than PID control. Fuzzy control results have a faster average rise time and settling time and do not have overshoot."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Nafiys Ismail
"Proses sistem kendali adalah proses penting yang terjadi di dunia perindustrian, salah satunya di ranah industri hulu migas. Salah satu instrumen utama pada proses upstream migas adalah separator yang memiliki fungsi untuk memisahkan kandungan fluida minyak mentah yang mengalir melalui pipa menjadi beberapa wujud fase. Pada kenyataanya hampir semua proses pengendalian separator pada fasilitas produksi PT. Pertamina EP masih menggunakan model pengendalian PID konvensional yang harus terus dimonitoring oleh sumber daya manusia selama 24 jam per hari. Oleh karenanya, pada penelitian ini dirancang sebuah metode pengendalian berbasis intelligent system, yaitu simulasi pengendalian Neuro Fuzzy. Metode pengendalian Neuro-Fuzzy ini didesain menggunakan algoritma ANFIS dengan input berupa setpoint, error, dan selisih error dari proses variabel fluida separator, yaitu level (h) fluida. Penelitian dilakukan menggunakan aplikasi Simulink/MATLAB dengan memasukkan fungsi transfer dari model matematis separator lalu melakukan perbandingan dengan melihat grafik respon dan parameter antara model pengendali PID dan ANFIS. Hasil dari penelitian menunjukan bahwa performa pengendali model ANFIS secara rata-rata memiliki overshoot yang jauh lebih baik dari model PID karena selalu mendekati nol dalam tiap kondisi set point serta model ANFIS memiliki nilai error yang lebih baik pada saat set point bernilai 5 dengan perbedaan error 0,712 dari error model pengendali PID.

The control system process is an important process that occurs in the industrial world, one of which is in the upstream oil and gas industry. One of the main instruments in the upstream oil and gas process is a separator which has afunction to separate the crude oil fluid content flowing through the pipe into several phases. In fact, almost all separator control processes at PT. Pertamina EP still uses the conventional PID control model which must be continuously monitored by human resources 24 hours per day. Therefore, in this study, a control method based on intelligent systems is based on Neuro Fuzzy control of the level (h) of the fluid. The research was conducted using the Simulink/MATLAB application by entering the transfer function of the separator mathematical model and then making comparisons by looking at the response and parameter charts between the PID and ANFIS controller. The results of the study show that the ANFIS model controller performance on average has a much better overshoot than the PID model because it is always close to zero in each set point condition and the ANFIS model has a better error value when the set point is 5 with an error difference of 0.712. of the PID controller model error."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Budi Suwardoyo
"Anti Lock Brake Systems (ABS) bertujuan untuk menghasilkan seoptimal mungkin gaya pengereman, tetapi selama proses pengereman roda kendaraan tidak terkunci sehingga kendaraan tetap terkendali.
Pada pengendalian ABS, untuk rnendapatkan hasil yang optimal maka diperlukan pengendali yang mampu menjaga besar torsi optimum yang diperkenankan sebelum teljadjnya penguncian pada roda kendaraan. Torsi optimum yang dimaksud adalah torsi pengereman pada saat equilibrium point.
Pengendalian ini dihadapkan pada pennasalahan berubah-ubahnya kondisi jalan, yang mengakibatkan besarnya torsi pengereman yang diberikan harus disesuaikan dengan kondisi jalan. Agar dapat diberikan besar torsi pengereman yang sesuai di perlukan slip ratio sebagai pembanding antara kondisi jalan yang berbeda. Karena itu dibutuhkan sensor untuk mendeteksi kecepatan putar roda yang kemudian data dan sensor tersebut digunakan umuk memperoleh slip ratio.
Pada skripsi ini untuk membedakan kondisi pemaukaan jalan digunakan decision logic (metode elemen hingga). Metode elemen hingga membedakan kondisi permukaan jalan dengan cara membandingkan besar torsi pengereman yang diberikan dengan slip ratio yang terukur.
Keluaran dan metode elemen hingga merupakan masukan bagi pengendali logika fuzzy. Masukan berupa informasi kondisi permukaan jalan menyebabkan pengendali Iogika dapat memutuskan untuk memberikan sinyal kendali yang sesuai dengan kondisi pemiukaan jalan kepada servovalve sehingga torsi pengereman optimum dapat diberikan selama terjadinya proses pengereman.
Output dan simulasi berupa bentuk-bentuk grafik yang merupakan tanggapan slip ratio terhadap waktu, tanggapan torsi pengereman terhadap waktu, tanggapan kecepatan terhadap waktu sehingga dapat diamati tanggapan sistem secara keseluruhan."
Depok: Fakultas Teknik Universitas Indonesia, 2001
S39913
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tomy Kusbianto
"Telah dilakukan penelitian untuk mengendalikan sistem multi input multi output pada sistem penerangan lampu menggunakan metode fuzzy logic. Adapun penelitian tersebut memiliki karakteristik pengendalian yang multivariable. Dengan pengaruh sistem yang saling mengganggu maka sistem menjadi tidak stabil, sehingga dibutuhkan suatu bilangan decoupler untuk menstabilkan kembali sistem dari keadaan yang saling mempengaruhi. Pembuatan sistem ini dilakukan dalam skala laboratorium agar dapat mengetahui terlebih dahulu mengenai sistem multi input multi output sebelum terjun ke dunia industri yang banyak memakai suatu sistem multi input multi output.

Research was conducted to control the multi-input multi system output at lamp lighting system using fuzzy logic. The The research has the characteristics of multivariable control. With the influence of the system that interfere with each other, the system becomes stable, so it is necessary to stabilize the number decoupler back system from a state of mutual influence. Making these systems do at laboratory scale in order to be able to know in advance about the system multi input multi output before plunging into the world of industry that many use a multi-input multi-output system."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
S29142
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>