Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 102097 dokumen yang sesuai dengan query
cover
Bagus Priyambodo
"Menurut IMF, sekitar 1% penurunan pertumbuhan ekonomi di AS akan menurunkanpertumbuhan ekonomi di Asia sebesar 0,5%-1%. Da mpak dari resesi global yang berasal dari resesi di AS akan mempengaruhi proyeksi perekonomian negara-negara di Asia, termasuk Indonesia baik yang sifatnya langsung maupun tidak langsung. Fenomenadiatas memberikan gambaran yang kongkrit hubungan sebab akibat dalam dunia perekonomian secara makro. Penelitian ini membahas tiga model ANN sebagai alat peramalan, yaitu GMDH, Feedforward back propagation neural network dan Elman recurrent neural network.
Perekonomian Indonesia di pilih sebagai objek peramalan. Ada dua macam peramalan yang akan di bandingkan diantara ketiga model tersebut. Pertama peramalan multivariate dimana komponen yang di gunakan sebagai input adalah variabel makro ekonomi Indonesia. Kedua adalah peramalan univariate / time series dimana komponen yang di gunakan sebagai input adalah nilai GDP indonesia dari tahun 1970.
Hasil peramalan multivariate dari ketiga model ANN menunjukan bahwa variabel makro ekonomi dapat digunakan sebagai input untuk peramalan multivariate pertumbuhan ekonomi Indonesia. Dari hasil pengujian, diketahui bahwa ANN dapat digunakan sebagai alternatif untuk memprediksi ekonomi Indonesia di masa sekarang maupun di masa yang akan datang. Pemahaman terhadap fenomena per- ekonomian Indonesia saat ini dan hubungannya dengan kemungkinan-kemungkinan yang terjadi di masa depan sangat membantu dalam menentukan sikap atau kebijakan yang mengarah ke harapan atau ekspektasi yang ingin dicapai.

According IMF, about 1% descent of US growth economic will descent growth economic in Asia about 0,5%-1%. Impact of global recession that came from US will influence economic projection in Asia, including Indonesia. This phenomenon give concrete description about relationship between cousity in macro economics world. This research will explain about three ANN model as forecasting tool. The three ANN model is GMDH, Feedforward backpropagation and Elman recurrent.
Indonesian economics choose as object for forecasting. There is two type of forecasting that will compare between three model ANN above. First is multivariate forecasting where component that used as input is variable of macro economic Indonesia. And second is univariate / time series where component that used as input is GDP of Indonesia from 1970.
Result of forecasting show that macro economic variable can be use as input for multivariate forcasting growth Indonesian economic. From research result, show that ANN can be used as alternative tool for forecasting Indonesian economics. Deep understanding about phenomenon of Indonesian economic now and connectivity with posibility that will happen in future will help Goverment to make decision to achieve goal that already plan."
Depok: Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Listian Pratomo
"Jumlah review mengalami peningkatan yang sangat pesat untuk setiap produk nya. Hal ini berakibat sulit nya bagi setiap pengguna untuk membaca semua review yang ada. Karya akhir ini menawarkan solusi menggunakan feature based opinion mining untuk mempermudah pengguna membaca review lebih mudah. Pada karya akhir ini terdapat 2 langkah yang akan dilakukan. Langkah pertama ialah melakukan ekstraksi feature menggunakan association rule dan pruning. Sedangkan langkah terakhir ialah menentukan orientasi dari setiap opini dengan menggunakan teknik klasifikasi. Beberapa algoritma klasifikasi seperti C45, Naïve Bayes dan Support Vector Machine cocok untuk mengatasi masalah ini. Dari hasil pengujian algoritma Support Vector Machine memiliki performa terbaik jika dibandingkan dengan algoritma lainnya.

The number of customer reviews for each product grows rapidly. This condition makes customer difficult to read all the review.This thesis propose feature based opinion mining to help customer reads review easily. Feature based opinion mining in this thesis consist of two steps. First step identify product features using association technique and pruning. The last step identify opinion sentence orientation using classification technique. Several classification algorithm, such as C45, Naive Bayes, and Support Vector Machines are good approaches to solve this problem. Support Vector Machine has the best performance compared to other algorithms."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nesia Dwiasta
"Sertifikat tanah merupakan surat tanda bukti hak yang berlaku sebagai alat pembuktian yang kuat mengenai data fisik dan data yuridis untuk kepemilikan tanah seseorang. Salah satu jenis pendaftaran sertifikat tanah yaitu sertifikat tanah rutin yang terdiri dari beberapa jenis objek sertifikat diantaranya adalah sertifikat tanah roya, peralihan hak atas tanah, perubahan hak atas tanah, hak tanggungan, split dan pendaftaran pertama kali. Instansi pemerintah yang memiliki wewenang mengeluarkan sertifikat tanah di Indonesia adalah Kementrian ATR/BPN melalui Kantor Pertanahan salah satunya yang terletak di Kabupaten Bandung. Namun kondisi yang terjadi di Kantor Pertanahan Kabupaten Bandung masih terdapat perlambatan penerbitan sertifikat tanah di setiap waktunya. Beberapa penyebab perlambatan tersebut karena proses perencanaan jumlah blangko dan petugas ukur yang masih belum sesuai. Sehingga diperlukan adanya perbaikan proses perencanaan menggunakan peramalan dengan pendekatan data mining untuk mendapatkan model terbaik. Metode yang digunakan adalah perbandingan metode Autoregressive Integrated Moving Average (ARIMA) dan Artificial Neural Network (ANN). Setelah dilakukan analisis berdasarkan Root Mean Square Error (RMSE), ANN dapat menghasilkan model dengan tingkat akurasi yang terbaik untuk melakukan peramalan pada masing-masing jenis sertifikat tanah dibandingkan ARIMA karena hasil dari ANN memiliki tingkat kesalahan terkecil.

A land certificate is a certificate of proof of rights that serves as a strong proof of physical data and juridical data for a person's land ownership. One type of land certificate registration is a routine land certificate consisting of several types of certificate objects includigroya land certificates, transfer of land rights, changes to land rights, mortgage rights, splits, and first registration. The government agency authorized to issue land certificatesin Indonesia is the Ministry of ATR/BPN through the land office, one of which is in Bandung Regency. However, the conditions that occur in the Bandung Regency land office are still a slowdown in the issuance of land certificates every time. Some of the reasons for the slowdown occurred because the planning process for the number of blanks and measuring officers was still not appropriate. So, it is necessary to improve the planning process using forecasting with a data mining approach to get the best model. The method used is to compare the Autoregressive Integrated Moving Average (ARIMA)and Artificial Neural Network (ANN) methods. After analyzing based on Root Mean Square Error (RMSE), the ANN can produce a model with the best accuracy forforecasting each type of land certificate compared to the ARIMA because the results of the ANN have the smallest error rate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mira Aulia Dahlan
"Sebagai perusahaan milik negara yang memproduksi produk pertanian, PT Perkebunan Nusantara (PTPN) memiliki anak perusahaan bernama KPBN yang melakukan tender terbuka dalam menjual produknya. Untuk mengetahui perilaku bidder serta asosiasi diantara bidder, hubungan antara bidder tersebut dapat diidentifikasi dengan menggunakan apriori algorithm. Hasil dari identifikasi asosiasi dapat dijadikan saran untuk pemasok dalam menemukan bidder paling potensial. Perilaku bidder juga dapat membantu pemasok untuk mengetahui bidder yang paling sering melakukan bidding.
Tahapan penelitian ini dimulai dengan pre-processing data selama tujuh bulan, kemudian membagi data tersebut menjadi tiga kelompok. Data tersebut kemudian diproses sehingga menghasilkan analisis asosiasi. Proses verifikasi hasil dan validasi aturan asosiasi dilakukan dengan menghitung derajat asosiasi dari seluruh aturan yang dihasilkan.

PT Perkebunan Nusantara (PTPN) is a state-owned company which produces agricultural product. To sell its product, PTPN has subsidiary named KPBN which held an open bidding. In order to identify bidder behavior and to investigate bidder association, association between bidders can be identified using the apriori algorithm. It could be as a suggestion to that supplier to find the most potential bidder. The behavior of bidders also may help the supplier to find out who the frequent bidder is.
The process of this research is started with pre-processing the data that had already been collected for seven months, spliting those data into three groups, generating the association analysis, and then calculating the degree association to verify and validated the rule.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31909
UI - Tesis Open  Universitas Indonesia Library
cover
Yogi Kurnia
"Tingginya jumlah peserta seleksi beasiswa yang tidak lulus, menyebabkan tidak efisiennya penyelenggaraan kegiatan seleksi beasiswa di LPDP. Berdasarkan data hasil seleksi beasiswa, terlihat bahwa persentase kelulusan peserta sangat rendah tiap tahunnya. Pada tahun 2013 proporsi yang tidak lulus seleksi sebesar 54%, sedangkan pada tahun 2014 dan tahun 2015 meningkat menjadi 85% dan 71%. Secara keseluruhan, terdapat 74% pendaftar beasiswa LPDP yang tidak lulus seleksi beasiswa dari tahun 2013 hingga tahun 2015. Hal ini menyebabkan tingginya biaya yang dikeluarkan untuk pelaksanaan seleksi. Jika LPDP bisa memprediksi peluang kelulusan peserta, maka biaya tersebut bisa dikurangi. Teknik klasifikasi pada data mining merupakan teknik yang tepat untuk permasalahan ini.
Metodologi yang digunakan dalam penelitian ini adalah knowledge discovery in databases (KDD). Metodologi ini terdiri dari 5 (lima) langkah, yaitu selection, preprocessing, transformation, data mining, dan interpretation / evaluation. Dataset bersumber dari data formulir pendaftaran beasiswa dan hasil wawancara. Proses pemodelan menggunakan software Rapid Miner dan algoritma decision tree. Model yang dihasilkan dievaluasi menggunakan k-fold cross validation. Hasil penelitian ini yaitu LPDP dapat memprediksi peluang kelulusan peserta seleksi.

The high number of participants who did not pass the scholarship selection, leading to inefficient operation of the selection of scholarship in the LPDP. Based on data from scholarship selection results, it appears that a very low percentage of graduation of each year. In 2013 the proportion who were not selected by 54%, whereas in 2014 and 2015 increased to 85% and 71%. Overall, there is a 74% LPDP scholarship applicants who did not pass the selection of scholarship from 2013 to 2015. This led to high costs incurred for the implementation of the selection. If LPDP can predict the chances of graduation participants, the cost can be reduced. Classification techniques in data mining is a technique that is appropriate for this problem.
The methodology used in this study is a knowledge discovery in databases (KDD). This methodology consists of five (5) steps, namely selection, preprocessing, transformation, data mining, and interpretation / evaluation. Dataset data sourced from the scholarship application form and interview. Process modeling using software Rapid Miner and decision tree algorithm. The resulting model was evaluated using the k-fold cross validation. Results of this study are LPDP can predict the chances of graduation of the selection.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2016
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Riara Novita
"Pemeliharaan kapal merupakan salah satu kegiatan galangan yang mengalami peningkatan seiring dengan jumlah transportasi laut nasional yang terus meningkat. Namun, peningkatan ini tidak diimbangi dengan peningkatan kapasitas galangan nasional sehingga menjadikan estimasi durasi pemeliharaan kapal sebagai suatu hal yang sangat penting bagi galangan. Penelitian ini menggunakan salah satu metode data mining, yaitu CART (Classification and Regression Tree) untuk mengestimasi durasi pemeliharaan yang dibatasi pada pekerjaan di atas dok saja atau yang dikenal dengan istilah dry docking. Dengan menggunakan volume pekerjaan dry docking sebagai input dalam melakukan estimasi durasi, didapatkanlah 4 kelas durasi dry docking dengan model linier dan kriteria pekerjaan yang berbeda. Model linier ini selanjutnya dapat digunakan untuk mengestimasi durasi dry docking berdasarkan kriteria pekerjaannya.

Maintenance is one of the shipbuilding activities that have increased in line with the rising of national marine transportation. However, this increase isn't offset by an increase in the national shipbuilding capacity, thus making an estimate of ship maintenance duration as a very important for the shipyard. This research uses one of data mining method, namely CART (Classification and Regression Tree) to estimate the duration of maintenance that is limited to dock works or which is known as dry docking. By using the volume of dock works as an input to estimate the duration, there are 4 classes of dry docking duration obtained with the different linear model and job criteria for each class. These linear models can then be used to estimate the duration of dry docking based on its job criteria."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1999
UI - Skripsi Open  Universitas Indonesia Library
cover
Sutedi
"Perguruan tinggi harus mampu melakukan proses evaluasi, perencanaan dan pengelolaan secara baik untuk dapat memenangkan persaingan di era globalisasi ini. Guna menunjang hal tersebut maka dibutuhkan dukungan informasi yang cukup dan berkualitas sehingga perguruan tinggi tersebut dapat menggali dan memprediksi potensi-potensi yang ada. Pembangunan data warehouse dan data mining adalah alternatif solusi yang dapat dilakukan untuk membantu organisasi mencari dan memahami pola-pola tersembunyi (hidden pattern) dari data yang dimiliki. Data warehouse adalah kumpulan basis data terintegrasi yang digunakan untuk mendukung proses pengambilan keputusan. Sedangkan data mining adalah analysis tools yang digunakan untuk mengekstrak informasi yang ada di data warehouse.
Penelitian ini mengkaji masalah perancangan data warehouse dan penerapan data mining untuk mendukung bidang akademik IBI Darmajaya dalam menyajikan informasi-informasi potensial yang diperlukan guna memberikan layanan akademik yang lebih baik. Langkah awal yang dilakukan adalah membangun data warehouse IBI Darmajaya, kemudian menerapkan teknik data mining untuk manganalisis data yang ada.
Hasil dari penelitian ini berupa data warehouse yang dapat menyajikan informasi guna mendukung proses evaluasi dan perencanaan promosi penerimaan mahasiswa baru ke daerah-daerah dan sekolah-sekolah yang potensial, proses evaluasi dan perencanaan media promosi yang akan digunakan, proses pengamatan trend mahasiswa berdasarkan status akademiknya, proses evaluasi dan perencanaan studi mahasiswa, serta proses evaluasi kinerja program studi dari segi kualitas lulusan dan masa studinya. Selain itu hasil penelitian ini juga berupa penerapan data mining untuk mencari rule-rule yang digunakan dalam mengarahkan peminatan mahasiswa dan mengarahkan pemilihan program studi bagi calon mahasiswa baru.

Higher education institution must be able to well perform processes of evaluation, planning and management in order to win the competition in this globalization era. To support any effort of the aforementioned, the institution needs qualified and sufficient information supports so that it can probe and predict any potential strength which existed. Development data warehouse and data mining is kinds of solution alternatives which can be done to help organization in finding and understanding hidden patterns from the data provided. Data warehouse is a collection of integrated databases which is used to support the process of decision making. Data mining is a kind of analysis tool which is used to extract any information provided in the data warehouse.
The research discussed a problem in designing data warehouse and applying data mining to support the academic system at IBI Darmajaya in representing potential information required for better academic services to learners. The first executed steps was establishing the data warehouse of IBI Darmajaya, then an analysis was conducted towards all saved data in the data warehouse by using data mining techniques.
The results of this research is a data warehouse that can represent information to support the evaluation process and acceptance of new students campaign planning to the potential areas and school, advertising media that will be used, monitoring of students? academic status, evaluation and planning of students? study plans, and performance evaluation of study program within the aspects of alumni quality and length of study. In addition, this research also result the application of data mining for finding the rules that used to driving and directing the students enthusiast and study program selection for prospective new students.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Tosan Wiar Ramdhani
"Pemerintah Kota Bogor merupakan salah satu bagian dari Pemerintah Provinsi Jawa Barat yang memiliki jumlah pegawai lebih dari 9000 orang. Pengelolaan kepegawaian dilakukan oleh Badan Kepegawaian Pendidikan dan Pelatihan Kota Bogor (BKPP). BKPP membentuk tim Badan Pertimbangan Jabatan dan Kepangkatan (Baperjakat) dalam tugas pengangkatan, pemindahan dan pemberhentian PNS dalam dan dari jabatan struktural Eselon IIA ke bawah. Baperjakat mengalami masalah dalam menyusun calon pejabat struktural yang selama ini dilakukan secara manual, meskipun sudah memiliki aplikasi Sistem Informasi Manajemen Kepegawaian (SIMPEG) sebagai aplikasi pengelolaan kepegawaian.
Penelitian ini melakukan identifikasi pola pengisian jabatan struktural di lingkungan Pemerintah Kota Bogor dengan menggunakan data jabatan struktural tahun 2009 hingga 2013 yang bersumber dari basis data SIMPEG. Berbagai algoritma data mining dari teknik classification diujicobakan untuk mengidentifikasi pola pengisian jabatan struktural.
Dari hasil classification, algoritma Classification Rule with Unbiased Interaction Selection and Estimation (CRUISE) menjadi algoritma terbaik dalam akurasi class eselon dengan tingkat akurasi rata-rata sebesar 95,7% untuk setiap tingkat eselon.
Pola yang dihasilkan dapat menjadi rules yang akan diimplementasikan sebagai modul baru dalam aplikasi SIMPEG yang berfungsi memberikan usulan dalam pengisian jabatan struktural yang ditempatkan secara otomatis. Urutan atribut yang secara dominan muncul pada setiap tingkat eselon adalah atribut jenjang jabatan, pangkat golongan, pendidikan dan pelatihan, tingkat pendidikan, masa kerja, pengalaman dalam unit kerja, serta umur.

Bogor District Government is a part of West Java Province Government, which employs more than 9,000 employees. The human resources are managed by human resources and training division that is called Badan Kepegawaian Pendidikan dan Pelatihan (BKPP). BKPP form a team called Badan Pertimbangan Jabatan dan Kepangkatan (Baperjakat), who are responsible for promoting, rotating and dismissing local government employees from structural positions below the Echelon IIA positions. Baperjakat have problems on constructing the draft of structural government positions. These processes were done manually, even though BKPP have a human resources information systems called SIMPEG.
The main purpose of this research is to identify patterns of filling structural positions at Bogor Local Government using the structural position data from 2009 to 2013. The data were taken from the SIMPEG database. Various data mining classification algorithms were tested to identify filling structural position patterns.
The classification process yields Classification Rule with Unbiased Interaction Selection and Estimation (CRUISE) as the best algorithm in echelon class. Its average accuracy is 95.7% for each echelon level.
The discovered patterns can be applied as base rules that will be implemented as new modules of SIMPEG. These new modules can provide suggestions for automatically filling structural positions. The order of attributes, which dominantly show at each echelon, are hierarchy type, class rank, training education, level of education, working period, experience within division and age.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2014
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Fajar Gumelar Pratama
"Direktorat Pembinaan Kursus dan Pelatihan memberikan layanan kursus dan pelatihan untuk meningkatkan kualitas hidup manusia Indonesia. Layanan kursus dan pelatihan diselenggarakan oleh lembaga pendidikan yang memenuhi syarat dalam bentuk program Pendidikan Kecakapan Kerja (PKK) dan Pendidikan Kecakapan Wirausaha (PKW). Dalam pelaksanaannya, banyak lembaga yang terlambat dalam menyampaikan laporan pertanggungjawaban (LPJ) hingga melewati akhir tahun anggaran. Hal tersebut dapat menyebabkan timbulnya potensi temuan dalam proses audit keuangan yang perlu ditindaklanjuti. Proses tindak lanjut temuan BPK membutuhkan sumber daya dalam bentuk dana, waktu, dan tenaga yang tidak sedikit.
Salah satu upaya untuk mengurangi jumlah lembaga yang berisiko terlambat dalam menyampaikan LPJ adalah dengan mengembangkan model klasifikasi kelayakan lembaga penerima dana bantuan dengan menggunakan teknik data mining. Dalam penelitian ini, teknik data mining yang digunakan adalah classification dengan algoritme decision tree, naive bayes, deep neural network dan logistic regression. Hasil penelitian menunjukkan bahwa model yang dihasilkan oleh algoritme logistic regression dari dataset hasil oversampling memiliki nilai MCC (Matthews correlation coefficient) yang paling tinggi di antara model-model lainnya.

The Directorate of Courses and Training Development provides course and training services to improve the quality of human life in Indonesia. These services are organized by qualified training providers in the form of Lifeskills for Work Education (PKK) and Lifeskills for Entrepreneurship Education (PKW) programme. In the implementation, many training providers are delayed in delivering accountability reports (LPJ) to the end of the year. This can lead to potential findings in the process of financial audits that need to be followed up. The follow-up process requires resources in the form of funds, time, and human resources.
One of the efforts to reduce the number of training providers at risk of delay in delivering LPJ is to develop a model of training providers worthiness classification using data mining techniques. The research utilized classification technique employing decision tree, naive bayes, deep neural network and logistic regression algorithm. The result showed us that model generated by the logistic regression algorithm from the oversampled dataset had the highest MCC (Matthews correlation coefficient) value among the other models.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Suciwati Nursiam
"Seiring dengan kemajuan teknologi yang semakin pesat khususnya teknologi internet, banyak bidang yang mulai bergeser ke dunia virtual salah satunya komunitas. Anggota komunitas kini dapat berbagi ketertarikan yang sama melalui internet yang kemudian dapat disebut sebagai virtual community. Bagi perusahaan, virtual community dapat dimanfaatkan dalam pengembangan produk baru untuk mendapatkan pengaruh positif. Penelitian ini bertujuan untuk melihat pengaruh keterlibatan virtual community dalam pengembangan produk baru yang difokuskan pada parameter speed to market, kualitas produk, customer needs fulfillment, dan diferensiasi produk sesuai dengan model penelitian Chan dan teori Hoyer. Selain itu, penelitian ini juga bertujuan untuk melihat pemanfaatan dan efektivitas media sosial Facebook dan Twitter oleh perusahaan untuk membantu aktivitas pengembangan produk baru. Aktivitas-aktivitas yang diteliti telah disesuaikan dengan aktivitas pengembangan produk baru di media sosial yang dikemukakan oleh Shih. Penelitian ini dilakukan dengan menggunakan metode kuantitatif yaitu wawancara dan observasi online, kualitatif menggunakan teknik analisis data PLS-SEM, serta studi kasus dengan mengambil perusahaan Gantibaju.com dan Thinkcookcook.com sebagai perusahaan objek studi kasus.
Hasil penelitian didapatkan bahwa terdapat pengaruh positif terhadap kualitas produk, customer needs fulfillment, dan diferensiasi produk pada perusahaan Gantibaju.com dan Thinkcookcook.com. Terdapat pengaruh positif terhadap speed to market di perusahaan Thinkcookcook.com, namun tidak pada Gantibaju.com. Untuk Thinkcookcook.com, Facebook merupakan media sosial yang paling efektif untuk melakukan aktivitas pengembangan produk baru, sedangkan Gantibaju.com lebih efektif menggunakan media sosial Twitter untuk melakukan aktivitas crowdsourcing ideation, finding answers and expertise, winning over the market, dan crowdsourcing feedback.

Along with the rapid technological advances, the internet in particular, many areas are beginning to become virtual, for instance community. Now, community members can share similar interests through the internet, creating virtual communities. For companies, virtual communities can be utilized during a new product development to gain positive influence. This research aims to examine the effect of virtual community involvement during a new product development, focusing on parameters such as speed to market, product quality, customer needs fulfillment, and product differentiation, in accordance to the research model of Chan and Hoyer’s theory. Furthermore, this study also aims to look at the utilization and effectiveness of social media namely Facebook and Twitter by companies in assisting new product development activities. This research is conducted using quantitative methods specifically interviews and online observations, qualitative methods using PLS-SEM data analysis techniques, and case study by taking Gantibaju.com and Thinkcookcook.com as objects of the study.
The results show that there is a positive influence on product quality, customer needs fulfillment, and product differentiation at Thinkcookcook.com and Gantibaju.com. Also, there is a positive influence on speed to market in Thinkcookcook.com, but not on Gantibaju.com. For Thinkcookcook.com, Facebook is the most effective social media for new product development activities, while Gantibaju.com use Twitter more effectively for crowdsourcing ideation, finding answers and expertise, winning over the market, and crowdsourcing feedback.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>