Ditemukan 16010 dokumen yang sesuai dengan query
New York: Chemical Engineering McGraw-Hill Pub. Co., 1984
660.28 MOD II
Buku Teks SO Universitas Indonesia Library
Egg, Jay
"With a focus on market needs and customer goals, this practical guide explains how to realize the full potential of geothermal HVAC by integrating hydronic systems and controls at maximum capacity. This book explains how to engineer and specify geothermal HVAC for building projects in varying geographic regions. Typical details on control parameters are provided. By using the proven methods in this innovative resource, you will be able to develop highly efficient, long-lasting, and aesthetically pleasing geothermal HVAC systems"
New York: McGraw-Hill, 2013
697 EGG m
Buku Teks SO Universitas Indonesia Library
London: Sage Publications, 2000
796.01 HAN
Buku Teks SO Universitas Indonesia Library
Putu Adika Reswara
"
Di antara sebagian besar sektor industri lainnya, industri kimia sedang mengalami pergolakan signifikan yang didorong oleh konsep yang secara kolektif dikenal sebagai Industri 4.0. Data sains adalah komponen penting dari Industri 4.0 karena memungkinkan ekstraksi informasi kontekstual dari berbagai sumber data. Ketika sistem menjadi lebih kompleks, kebutuhan para insinyur untuk mengekstrak sinyal dari data dengan tepat berkembang secara dramatis, menuntut literasi data dan keahlian analitik pada generasi berikutnya dari lulusan teknik kimia. Salah satu dari banyak kasus di mana data sains dan machine learning dapat diterapkan adalah untuk prediksi. Prediksi berbasis machine learning dapat diterapkan pada banyak aspek teknik kimia contohnya pada Chemical Engineering Plant Cost Index (CEPCI). CEPCI sangat penting untuk perhitungan desain pabrik dan dipengaruhi oleh banyak variabel. Pendekatan machine learning diperlukan untuk memperhitungkan semua variabel tersebut dan mendapatkan hasil yang tepat untuk variabel yang ditargetkan. Dengan demikian, tujuan dari tugas akhir ini adalah merancang program yang mampu memprediksi CEPCI. Alhasil, model regresi yang telah dibuat mampu memprediksi Composite CE Index dengan error rata-rata 3.75% dari index aslinya.
Among most other industrial sectors, the chemical industry is undergoing a significant upheaval driven by concepts known collectively as Industry 4.0. Data science is an important component of Industry 4.0 since it enables the extraction of contextualized information from a variety of data sources. As systems become more complex, the necessity for engineers to appropriately extract signal from data develops dramatically, demanding data literacy and analytics expertise in the next generation of chemical engineering graduates. One of the many cases where data science and machine learning can be applied to is for prediction. Machine Learning based prediction can be applied to many chemical engineering aspects, in this case the Chemical Engineering Plant Cost Index (CEPCI). CEPCI is essential for plant design calculations and is greatly affected by numerous variables. Machine learning approach is needed to account for all said variables and obtain valid result for target variables. Thus, the purpose of this thesis is to design programs that are able to predict CEPCI. As a result, the regression model created was able to predict the Composite CE Index with average error of 3.75% from the real index.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Jay, Rosemary
London : Sweet & Maxwell , 2012
342.410 85 JAY d
Buku Teks Universitas Indonesia Library
New York: McGraw-Hill, 1950
R 660.2 CHE
Buku Referensi Universitas Indonesia Library
Badger, Walter Lucius, 1886-1958
Auckland: McGraw-Hill, 1995
660.2 BAD i
Buku Teks SO Universitas Indonesia Library
McCabe, Warren L. (Warren Lee), 1899-
Boston: McGraw-Hill, 2005
660.284 2 MCC u
Buku Teks SO Universitas Indonesia Library
Sandler, Stanley I.
"Accompanying CD-ROM contains PDF files of important data figures that students can download and print for use in solving homework problems"
Hoboken, N.J.: John Wiley, 2006
541SANC001
Multimedia Universitas Indonesia Library
Chopey, Nicholas P.
New York: McGraw-Hill, 1994
R 660.2 HAN
Buku Referensi Universitas Indonesia Library