Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 88010 dokumen yang sesuai dengan query
cover
Eva Nirmala
"ABSTRAK
Pemanfaatan tumbuh-tumbuhan di Indonesia sementara ini hanya pada buah,biji, umbi, daun, kulit dan bunga. Bagian tumbuhan yang lain seperti batang, tangkai, sekam dan jerami umumnya belum dimanfaatkan. Bagian-bagian tumbuhan tersebut merupakan limbah hasil pertanian yang diantaranya banyak mengandung selulosa.
Sekarang ini penggunaan karbon aktif banyak sekali industri-industri baik pangan maupun non pangan untuk memurnikan hasil dari produksinya. Karbon aktif yang ada dipasaran harganya cukup mahal maka salah satu sumber alternatif yang dapat dijadikan karbon aktif adalah tongkol Jagung yang berasal dari limbah pertanian. Hal ini sangat memungkinkan karena dilihat dari bahan yang dikandungnya tongkol jagung banyak mengandung selulosa. Di Indonesia tongkol jagung diperkirakan akan terus meningkat jumlahnya mengingat jagung menempati urutan kedua sebagai makanan pokok setelah beras. Maka diperkirakan jumlah tongkol jagung juga akan terus meningkat.
Pembuatan karbon aktif melalui tiga tahapan yaitu dehidrasi, karbonisasi dan aktivasi. Aktivasi yang dilakukan pada penelitian ini yaitu dengan cara aktivasi kimia. Aktivator yang digunakan adalah ZnCl2 dengan konsentrasi 10%( w/v ).
Hasil yang diperoleh dari penelitian ini adalah semakin tinggi suhu aktivasi maka daya serap semakin baik dan semakin lama waktu aktivasi juga akan meningkatkan daya serap dari karbon aktif tongkol jagung. Diperoleh hasil yang maksimal dari penelitian ini yaitu dengan suhu 500oC selama 3 jam. Untuk daya serap terhadap l2 adalah 734,45 mg/gr, Metilen Biru sebanyak 1100 ml/gr, logam Pb2+ berkurang sebanyak 18,01%, zat warna merah berkurang sebanyak 14,88%, zat warna hijau berkurang sebesar 9,19%, da minyak kemiri dengan hasil yang tidak berate."
1999
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moenica Sari Dewi
"Bio-oil hasil pirolisis lambat bonggol jagung memiliki kandungan senyawa oksigenat yang banyak. Senyawa oksigenat paling banyak dalam bio-oil adalah asam asetat. Dari hasil uji C-NMR kandungan senyawa oksigenat dan alifatik dalam bio-oil masing-masing sebesar 53,8% dan 46,2%. Senyawa alifatik pada bio-oil memiliki sedikit percabangan dengan tingkat percabangan yang pendek. Kandungan senyawa oksigenat yang banyak terdapat dalam bio-oil menurunkan nilai kalor bio-oil, menyebabkan korosif, serta tidak stabil sehingga perlu dilakukan proses hidrodeoksigenasi untuk mengurangi kandungan senyawa oksigenat dalam bio-oil. Pada penelitian ini, bio-oil dihasilkan melalui proses pirolisis lambat bonggol jagung. Reaksi hidrodeoksigenasi dilakukan dalam reaktor tangki berpengaduk dengan katalis NiCu/ZrO2 pada temperatur 200oC dan tekanan 14 bar. Pengaruh komposisi pelarut heksadekana terhadap komposisi biofuel dilakukan pada 65%, 75%, 82,5%, dan 90%. Dari hasil XRF dan EDX kandungan nikel dan tembaga pada katalis masing-masing sebesar 1,96% dan 1,47%. Katalis NiCu/ZrO2 dengan struktur monosiklik yang bersifat amfoter ini mampu mengurangi kandungan senyawa oksigenat sampai tersisa 17% dan meningkatkan senyawa alkana hingga 83% pada komposisi pelarut heksadekana 90%. Hasil penelitian menunjukkan bahwa peningkatan komposisi pelarut berdampak pada penurunan kandungan senyawa oksigenat. Pada persentase pelarut yang tinggi diperkirakan pelarut yang berada pada kondisi superkritis memiliki diffusivitas yang tinggi yang dapat mengurangi hambatan perpindahan massa reaktan dalam reaksi. Komposisi pelarut pada 90% menghasilkan produk terbaik dengan kandungan furan sebesar 0% dan kandungan aldehid serta fennol yang paling sedikit diantara variasi komposisi pelarut yang ada.

Bio-oil from the slow pyrolysis of corn cobs contains a lot of oxygenate compounds. The most abundant oxygenate compound in bio-oil is acetic acid. From the results of the C-NMR test, the oxygenate and aliphatic compounds in bio-oil were 53.8% and 46.2%, respectively. The aliphatic compounds in bio-oil have little branching with a short level of branching. The oxygenate compounds in bio-oil reduces the heating value of bio-oil, causes corrosiveness, and is unstable. Therefore bio-oil need to be upgrade through hydrodeoxygenation process to reduce the content of oxygenate compounds in bio-oil. In this study, bio-oil was produced through a slow pyrolysis process of corn cobs. The hydrodeoxygenation reaction was carried out in a stirred tank reactor with a NiCu/ZrO2 catalyst at 200oC and 14 bar. Hexadecane composition will be varied at 65%, 75%, 82.5%, and 90%. From the XRF and EDX results nickel and copper content in the catalyst was 1.96% and 1.47%, respectively. The NiCu/ZrO2 catalyst with an amphoter monocyclic structure is able to reduce the oxygenate compounds to 17% and increase alkanes to 83% at 90% hexadecane solvent composition. The results showed that increase in the solvent composition caused the decrease in the amount of oxygenate compounds. At a high percentage of solvent, it is estimated that the solvent in supercritical conditions has a high diffusivity which can reduce the mass transfer resistance of the reactants in the reaction. The solvent composition at 90% produced the best product with 0% furan content and the least aldehyde and phenol content among the various solvent compositions."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
His Muhammad Bintang
"Dengan tren perkembangan sumber energi baru terbarukan EBT dan mobil listrik, tuntutan akan piranti penyimpan energi PPE berperforma tinggi tidak dapat dihindari. Peningkatan yang signifikan telah dicapai melalui penelitian mengenai mekanisme penyimpanan energi dan penelitian material baru. Saat ini, PPE dengan kepadatan energi tinggi diwakilkan oleh baterai, dan PPE dengan kepadatan daya tinggi diwakilkan oleh superkapasitor. Namun beberapa aplikasi membutuhkan kepadatan energi dan daya yang tinggi. Solusinya adalah kapasitor ion lithium, yang menggabungkan mekanisme kerja dari baterai dan superkapasitor.
Pada penelitian ini, setengah sel kapasitor ion lithium disusun menggunakan elektroda berbahan karbon aktif yang telah tersedia secara komersial dan karbon aktif yang disintesis dari limbah tongkol jagung. Pengujian BET menunjukkan bahwa proses aktivasi dapat meningkatkan luas permukaan spesifik SSA dari karbon tongkol jagung lima kali lebih tinggi, yaitu mencapai 615,448 m /g. Sementara pengujian elektrokimia menunjukkan bahwa semakin tinggi SSA, maka kapasitas spesifik menjadi lebih besar. Dari tiga elektroda yang berbeda, elektroda berbahan karbon aktif komersial menunjukkan performa yang lebih unggul dengan kapasitas spesifik sebesar 91,85 mAh/g.

Nowadays, the development of renewable energy and electric carsmaking the demand for high performance energy storage devices unavoidable. Significant improvements have been achieved through research on energy storage mechanisms and investigation on new materials. At this time, the high energy density energy storage is represented by batteries, and high power density device is represented by supercapacitors. However, some applications require both of high energy and power density. The solution is combining the mechanism of the battery and the supercapacitor as lithium ion capacitor.
In this study, half cell lithium ion capacitor were assembled using commercially available activated carbon electrodes and activated carbon electrodes synthesized from corncob waste. The BET test shows that the activation process can increase the specific surface area SSA of corncob carbon up to five times higher, reaching 615,448 m g. While electrochemical characterization shows that the higher the SSA, the higher specific capacity achieved. From three different electrodes, commercial activated carbon electrodes show superior performance with a specific capacity of 91.85 mAh g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fianna Utomo
"Bonggol jagung memiliki potensi yang tinggi untuk dikembangkan menjadi bio-oil oleh karena banyaknya limbah pertanian jagung Indonesia. Selain itu, limbah plastik juga berlimpah di Indonesia, terutama plastik polipropilena. Co-pyrolysis antara bonggol jagung-plastik polipropilena memiliki efek sinergetik yang mengubah sebagian fraksi polar dari bio-oil menjadi fraksi non-polar yang mengandung senyawa non-oksigenat sebagai bahan baku untuk sintesis biofuel. Pada percobaan ini, pirolisis dari fraksi non-polar dilakukan untuk memproduksi bio-oil yang memiliki karakteristik yang dekat dengan bensin. Pirolisis dilakukan pada dua tahapan, di mana tahap pertama adalah co-pyrolysis untuk memproduksi fraksi non-polar dan tahap kedua adalah untuk mempirolisis fraksi non-polar tersebut untuk menurunkan viskositasnya menjadi dekat dengan viskositas bensin. Kedua tahap pirolisis akan dilakukan dalam reaktor tabung berpengaduk pada suhu 100 RPM, heating rate 5°C/menit, dan laju alir nitrogen 750 mL/menit pada tekanan gas nitrogen 3 bar. Variasi yang dilakukan berupa suhu akhir pirolisis tahap kedua. Produk bio-oil dikarakterisasi menggunakan H-NMR, GC-MS, LC-MS, FTIR, dan viskometer. Yield dan viskositas bio-oil dari hasil pirolisis tahap kedua bergantung kepada suhu akhir pirolisis, di mana semakin tinggi suhu, yield akan semakin tinggi dan viskositas juga cenderung untuk semakin tinggi. Adapun bio-oil dengan suhu akhir pirolisis tahap kedua 300°C memiliki karakteristik yang paling dekat dengan bensin.

Corncobs biomass has a high potential to be developed into bio oil because of large amount of maize farm waste in Indonesia. In addition, plastic waste is also abundant in Indonesia, especially polypropylene. Co pyrolysis between corncobs and polypropylene has a synergetic effect that transforms some polar fraction of bio oil into non polar fraction containing non oxygenate compounds as precursor for synthesis of biofuel. In the present work, pyrolysis of the non polar fraction of bio oil was led to produce bio oil which had similar characteristics to that of gasoline. The pyrolysis was carried out in two stages, where the first stage was co pyrolysis to produce non polar bio oil and the second stage was pyrolysis of non polar fraction to reduce its viscosity similar to that of gasoline. The first and second stage pyrolysis was carried out in a stirred tank reactor at 100 RPM, heating rate of 5°C min and nitrogen flow rate of 750 mL min under 3 bar nitrogen gas pressure with the second stage pyrolysis final temperature varied. The resulting bio oil product was characterized by FT IR, GC MS, H NMR, viscometer and LC MS. Bio oil viscosity and yield of the second stage pyrolysis heavily depended on its final temperature, in which the higher the temperature, the higher was the viscosity, yet the higher was the bio oil yield. Bio oil with secondary pyrolysis final temperature of 300°C has the most similarities to gasoline characteristics. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasibuan, Shafira Azzahra Nurfatihah
"Limbah bonggol jagung di Indonesia mencapai 3,02 juta ton per tahun menjadikan biomassa ini potensial untuk dikembangkan sebagai sumber bio-oil yang mengandung beberapa senyawa yang dapat dimanfaatkan lebih lanjut, salah satu senyawa yang terkandung yaitu Levoglucosan. Levoglucosan merupakan salah satu major komponen hasil pirolisis dari selulosa yang belakangan ini banyak dikembangkan karena memiliki nilai tambah yang tinggi dan banyak digunakan untuk produksi solven, plastik, surfaktan dan resin. Dalam produksi Levoglucosan diharapkan tidak terjadi glucose ring opening maka dengan itu beberapa faktor seperti adanya AAEM (alkali and alkali earth minerals) pada abu dan lignin harus dihilangkan karena masing-masing dapat bertindak sebagai katalis terjadinya ring opening dan dapat menyebabkan terbentuknya reaksi-reaksi sekunder. Upaya untuk menekan kandungan AAEM dan lignin adalah melalui pretreatment dengan menggunakan H2SO4. Pada penelitian ini dilakukan konsentrasi H2SO4 yaitu 1%wt, 3%wt, 5%wt dan 7%wt. Proses pretreatment akan dikombinasikan dengan proses torefaksi. Torefaksi dilakukan karena dapat membantu untuk menghilangkan residu sisa pretreatment H2SO4 dan dapat menghilangkan kandungan air pada biomassa. Penelitian untuk produksi levoglucosan dengan melibatkan torefaksi belum pernah dilakukan. Parameter yang divariasikan pada penelitian ini adalah persentase H2SO4, dan temperatur torefaksi. Proses torefaksi akan dilakukan pada variasi temperature 120oC, 160oC, 200oC, dan 240oC yang menjadi kebaruan dalam penelitian ini. Hasil dari penelitian ini menujukkan bahwa penggunaan asam sulfat dengan konsentrasi 3%wt memberikan hasil optimal dalam penghilangan kandungan AAEM dan proses torefaksi memberikan perubahan terhadap kandungan lignoselulosa yang dievaluasi lebih lanjut dengan menggunakan kurva derivative thermogravimetric (DTG) dan menunjukkan bahwa temperature optimum torefaksi terjadi pada 240oC.

Corn cobs waste in Indonesia reaches 3.02 million tons per year, making this biomass a potential source of bio-oil which contains several compounds that can be used further, one of the compounds contained is Levoglucosan. Levoglucosan is one of the major components of cellulose pyrolysis which has recently been developed because it has high added value and is widely used for the production of solvents, plastics, surfactants and resins. In the production of Levoglucosan, it is hoped that glucose ring opening will not occur, therefore several factors such as the presence of AAEM (alkaline and alkaline earth minerals) in the ash and lignin must be removed because each of them can act as a catalyst for ring opening and can cause the formation of secondary reactions. The effort to suppress AAEM and lignin content is through pretreatment using H2SO4. In this study, H2SO4 concentrations were carried out, namely 1% wt, 3% wt, 5% wt dan 7% wt. The pretreatment process will be combined with the torefaction process. Torefaction is carried out because it can help to remove residual H2SO4 pretreatment residues and can remove water content in biomass. Research for levoglucosan production by involving torefaction has never been carried out. The parameters varied in this study were the percentage of H2SO4 and the torefaction temperature. The torefaction process will be carried out at temperature variations of 120oC, 150oC, 180oC, 210oC, and 240oC which are the novelties of this research. The results of this study showed that the use of sulfuric acid with a concentration of 3% wt gave optimal results in the removal of AAEM content and the torrefaction process gave changes to the lignocellulosic content which was further evaluated using a thermogravimetric derivative (DTG) curve and the result shows that the optimum torrefaction temperature occurs at 240oC"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Justin Edgar
"Co-pyrolysis antara bonggol jagung dengan plastik polipropilena dilakukan di dalam reaktor tangka berpengaduk menggunakan gas CO2 sebagai gas pembawa karena ketersediaannya yang melimpah dan harganya yang murah. Percobaan dilakukan pada berbagai komposisi bonggol jagung dan plastik polipropilena untuk memperhitungkan pengaruh komposisi pada yield dan kualitas minyak nabati yang dihasilkan. Laju alir gas yang digunakan adalah 750 mL/menit dan laju pemanasan sebesar 5°C/menit hingga suhu mencapai 500°C.
Hasil penelitian menunjukkan bahwa yield gas non-kondensibel dan char yang dihasilkan lebih banyak, sedangkan yield minyak nabati lebih sedikit dibandingkan saat gas N2 digunakan sebagai gas pembawa. Derajat percabangan molekul pada fraksi non-polar minyak nabati yang dihasilkan terbukti lebih besar dan kandungan aromatiknya lebih sedikit dibandingkan dengan bahan bakar komersial. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadhila Ahmad Anindria
"Bonggol jagung merupakan salah satu biomassa yang memiliki jumlah yang berlimpah di Indonesia. Dengan pirolisis, bonggol jagung dapat dikonversi menjadi bio-oil yang mengandung senyawa seperti furan, fenol, dan turunannya yang dapat dimanfaatkan sebagai pengekstraksi aromatik pada minyak pelumas mentah. Banyaknya kandungan aromatik pada pelumas dapat mempengaruhi sifat fisik pelumas yang menyebabkan gesekan pada bagian-bagian mesin yang dilumasi. Objektif penelitian ini adalah memperoleh fraksi furan, fenol, dan turunannya dari pirolisis yang dapat dimanfaatkan sebagai pelarut aromatik pada pelumas yang optimal. Pirolisis dilakukan pada reaktor berpengaduk dengan heating rate 5oC/menit, suhu maksimal 500oC, dan dialirkan gas N2 dengan laju alir 900 mL/menit. Bio-oil hasil pirolisis mengandung berbagai senyawa yang tidak diinginkan, salah satu yang paling dominan adalah asam karboksilat 37, sementara kandungan furan 13 dan fenol 7. Isolasi fraksi furan dan fenol dilakukan dengan penambahan NaOH dan sentrifugasi untuk menghasilkan dua fasa terpisah, yaitu fasa asam karboksilat serta fasa furan dan fenol. Fasa furan dan fenol mengandung furan 13 dan fenol 27 serta tidak ada kandungan asam karboksilat. Ekstraksi aromatik dilakukan dengan menggunakan fasa furan dan fenol dan pelumas mesin yang dicampur dengan p-xylene sebagai senyawa model aromatik pada suhu konstan 40oC selama 60 menit. Hasil eksperimen menunjukkan bahwa semakin besar rasio berat pelarut terhadap pelumas, sisa aromatik yang terdapat pada rafinat semakin sedikit, dan semakin sedikit jumlah aromatik awal pada pelumas, efektivitas melarutkan aromatik semakin besar.

Corncob is one of the biomass which has abundant amount in Indonesia. Through pyrolysis, corncobs can be converted into bio oils containing compounds such as furans phenol, and its derivatives which can be utilized as extractants of aromatics in raw lubricant oil. In high temperature, the aromatic content in engine lubricants can affect physical properties of the lubricants causing wearing on engine parts. The object of this research is to utilize the fraction of furan, phenol, and its derivatives from pyrolysis as an optimum aromatic extractant. Pyrolysis has been done in a stirred tank reactor with a heating rate of 5oC min, a maximum temperature of 500oC and flow rate N2 of 900mL min. Bio oil from pyrolysis contains many undesired compounds, one of which was carboxylic acid as the predominant compounds 37, while furan content was 13 and phenol 7. Isolation of furan and phenol fractions has been achieved by the addition of NaOH and then centrifugation to produce two separated phases the carboxylic acid phase and the furan and phenol phase. Furan and phenol phase contains 13 furan and 27 phenol with no carboxylic acid content. The aromatic extraction was performed using furan and phenol phase and an engine lubricant mixed with p xylene as an aromatic compound model at constant temperature of 40oC for 60 minutes. Experiment result shows that the greater the weight ratio of solvent to lubricant, the lower is the aromatic residual present in the raffinate and the lower the initial aromatic content in lubricant, the greater the effectiveness of aromatic extraction."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Rachman
"Tongkol jagung yang merupakan limbah pertanian digunakan untuk pembuatan karbon aktif. Karbon ini diaktivasi dengan Zinc Chloride untuk mendapat karbon dengan luas permukaan yang besar. Karbon Aktif dikarakterisasi dengan Iodium dan Metilen Biru untuk mengetahui daya adsorpsinya dan diaplikasikan dalam pemisahan etanol dan air. Karakterisasi optimum pada ukuran 300 ?m. Karakterisasi dengan iodium dan metilen biru didapat daya adsorpsi karbon 772,2 mg/g dan 110,3 mg/g. Dengan FTIR gugus hidroksil dan karbonil dominan muncul. Aplikasi pemisahan etanol dan air didapatkan kemurnian etanol sebesar 97,9 % untuk perbandingan padat cair 1:4 waktu kontak 24 jam. Variasi waktu kontak didapat 120 menit kondisi teroptimum dengan kemurnian etanol sebesar 97,2 %.
Corn cob agricultural waste, which is used for making activated carbon. Carbon is activated with Zinc Chloride for carbon with a large surface. Active carbon characterized with Iodium and Methylene Blue to know the adsorption capability and applied in the separation of ethanol and water. Characterization on the optimum size of 300?m gained adsorption capability of iodium and methylene blue 772.2 mg / g and 110.3 mg / g. With FTIR cluster hydroxyl and carbonyl appear dominant. Applications ethanol and water separation obtained purity of 97.9% ethanol for comparison of 1:4 liquid solid contact time within 24 hours. Variations in the contact time obtained 120 minutes as the most optimum condition with ethanol purity of 97.2%."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51934
UI - Skripsi Open  Universitas Indonesia Library
cover
Aditya Liberty Prabowo
"Karbon aktif dibuat dari tongkol jagung melalui karbonisasi dilanjutkan aktivasi menggunakan KOH. Karbon aktif tongkol jagung dikarakterisasi menggunakan metode BET, FTIR, adsorpsi metilen biru dan iodium untuk mengetahui luas permukaan, gugus fungsi serta penyerapan molekul besar dan kecil.
Karbon aktif tongkol jagung diaplikasikan untuk adsorpsi Cu, Pb dan amonia. Adsorpsi paling optimum saat aplikasi dimiliki : karbon aktif tongkol jagung berukuran 0,06 mm dengan persentase penyisihan 52,99 % pada adsorpsi Cu; karbon aktif tongkol jagung berukuran 0,06 mm dengan persentase penyisihan 49,04 % saat adsorpsi Pb; dan karbon aktif tongkol jagung berukuran 0,5 mm dengan kapasitas adsorpsi 2,08 gr/gr saat adsorpsi uap amonia.

Activated carbon made from corn cob through carbonization followed by activation using KOH. Corn cob activated carbon through characterization using BET, FTIR, methilen blue and iodium adsorption method in order to obtain surface area, functional group, and adsorption of big and small molecul.
Corn cob activated carbon used for applied for Cu, Pb and ammonia adsorption. Optimum adsorption when application was obtained by using : corn cob activated carbon which have a measurement of 0,06 mm with elimination percentage 52,99 % at Cu adsorption; corn cob activated carbon which have a measurement of 0,06 mm with elimination percentage 49,04 % at Pb adsorption; dan corn cob activated carbon which have a measurement of 0,5 mm with adsorption capacity 2,08 gr/gr at ammonia adsorption.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52236
UI - Skripsi Open  Universitas Indonesia Library
cover
Nur Aini Rahma
"Peningkatan penggunaan akan energi terbarukan yang ramah lingkungan menjadi alasan dalam perkembangan penelitian mengenai sistem penyimpan energi. Kepadatan daya dan energi menjadi salah satu faktor penentu pemilihan jenis sistem penyimpan energi. Kapasitor lithium ion (KLI) menjadi salah satu alternatif untuk menjawab kekurangan kepadatan daya pada baterai lithium ion (BLI) dan kepadatan energi pada superkapasitor. Nilai kapasitansi sebuah KLI dipengaruhi oleh karakteristik material katoda berupa luas spesifik permukaan, pori, dan kandungan unsur pada karbon aktif.
Penelitian dan pengembangan karbon aktif berbasis biomassa sebagai material elektroda KLI telah menarik banyak perhatian dari para peneliti karena sumber daya biomassa yang melimpah, termasuk limbah tongkol jagung. Urgensi untuk menemukan alternatif karbon yang berbahan murah dan sederhana dapat diperoleh dengan mensintesis limbah tongkol jagung yang berlimpah dan cocok dengan sifat karbon. Penggunaan agen aktivator kimia selama proses aktivasi sangat penting untuk menghasilkan karbon aktif yang diinginkan, termasuk luas permukaan yang tinggi dan daya konduksi listrik yang baik. Di antara berbagai agen kimia, KOH dan ZnCl2 telah banyak digunakan mensintesis karbon aktif.
Pada penelitian ini, karbon aktif berbahan tongkol jagung dengan variasi agen aktivator KOH dan ZnCl2 serta variasi rasio karbon dengan agen aktivator disintesis sebagai material katoda KLI dan dianalisis pengaruhnya terhadap kinerja KLI. Scanning electron microscopy (SEM), energy dispersive x-ray (EDX), Brunauer-Emmett-Teller (BET), serta Raman spectra digunakan untuk mengkarakterisasi karbon aktif.
Hasil pengujian menunjukkan semua sampel memiliki pori berukuran mikro yang merata serta kandungan unsur karbon di atas 80%. Pori dengan ukuran terkecil terlihat pada sampel CACK12 dengan ukuran 0.2 µm. Luas permukaan karbon aktif berbahan tongkol jagung yang didapat baik dari agen aktivator KOH dan ZnCl2 dengan variasi karbon dan agen aktivator 1:3 (CACK13 dan CACZ13) tidak jauh berbeda yaitu: di kisaran nilai 800 m2/g. Kristalit yang terbentuk pada CACK dan CACZ berupa karbon amorf yang padat. Sampel karbon aktif yang dibuat selanjutnya disintesis menjadi katoda KLI dengan LTO sebagai material anodanya. Pengujian elektrokimia dilakukan melalui cyclic-voltammetry (CV) dan charge discharge (CD). Dari hasil pengujian didapat nilai kapasitansi spesifik tertinggi pada KLI-K3 dengan nilai 28,04 F/g dengan energi spesifik112,14 Wh/kg dan daya spesifik 1032.69 W/kg.

The enhancement of renewable energy use which is environmentally friendly is the reason in the development of research on energy storage systems. Power and energy density is one of the determining factors in choosing the type of energy storage system. Lithium ion capacitors (LIC) are an alternative to answer the lack of power density in lithium ion batteries (LIB) and energy density in supercapacitors. The capacitance value of a LIC is influenced by the characteristics of the cathode material such as specific surface area, pore, and elemental content in activated carbon.
The research and development of biomass-based activated carbon as a LIC electrode material has attracted much attention from researchers because of its abundant biomass resources, including corncob waste. The urgency to find carbon alternatives that are cheap and simple can be obtained by synthesizing corn cobs waste that is abundant and suitable with carbon properties. The use of chemical activator agents during the activation process is very important to produce the desired activated carbon, including high surface area and good electrical conductivity. Among various chemical agents, KOH and ZnCl2 have been widely used to synthesize activated carbon.
In this study, activated carbon made from corncob with variations of activator agents KOH and ZnCl2 and variations in the ratio of carbon with activator agents were synthesized as LIC cathode material and analyzed for their effect on LIC performance. Scanning electron microscopy (SEM), energy dispersive x-ray (EDX), Brunauer-Emmett-Teller (BET), and Raman spectra are used to characterize activated carbon.
The test results show all samples have a uniform micro-sized pore and carbon element content above 80%. The surface area of activated carbon made from corn cobs obtained from both KOH and ZnCl2 activator agents with carbon variations and 1: 3 activator agents (CACK13 and CACZ13) is not much different, namely: in the range of 800 m2 / g. The crystallites formed in CACK and CACZ are solid amorphous carbon. The activated carbon samples were then synthesized into KLI cathodes with LTO as the anode material. Electrochemical testing is done through cyclic-voltammetry (CV) and charge discharge (CD). From CV result KLI-K3 has the biggest specific capacitance 28,04 F/g with specific energy 112,14 Wh/kg and specific power 1032.69 W/kg.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T55172
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>