Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 104280 dokumen yang sesuai dengan query
cover
Universitas Indonesia, 2001
S27489
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahanti Natalia
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27821
UI - Skripsi Open  Universitas Indonesia Library
cover
Ramadhani Fitri
"ABSTRAK
Penaksiran parameter dalam model regresi memiliki dua pendekatan yaitu pendekatan regresi parametrik dan pendekatan regresi nonparametrik. Dalam regresi parametrik bentuk dari kurva hubungan antara variabel respon dan variabel prediktor sudah ditentukan berdasarkan plot data, sedangkan dalam regresi nonparametrik bentuk dari kurva tidak diketahui. Salah satu regresi nonparametrik yang dapat digunakan adalah regresi spline. Regresi spline adalah suatu piecewise polynomial yang dihubungkan oleh titik-titik bersama yang disebut dengan knot. Regresi spline yang menggunakan fungsi basis B Spline disebut dengan regresi B Spline. Pada umumnya estimasi parameter regresi B Spline dilakukan dengan menggunakan metode OLS Ordinary Least Square. Namun, dengan metode OLS akan menyebabkan plot taksiran kurva regresi menjadi fluktuatif apabila pemilihan jumlah knot terlalu banyak. Untuk itu diperlukan suatu tambahan kendala berupa penalty yang didalamnya mengandung smoothing parameter sehingga diperoleh taksiran ideal. Metode estimasi parameter ini dikenal dengan metode PLS Penalized Least Square . Metode PLS dengan penalty yang merupakan integral kuadrat derivatif kedua dari taksiran kurva disebut juga dengan metode o rsquo;sullivan penalized spline. Pada penerapan contoh data, didapat 23 buah knot dan smoothing parameter sebesar 0.68.

ABSTRACT
Parameter estimation of regression model has two approaches, that is parametric and nonparametric regression approach. In parametric regression, the shape of regression curve is determined based on scatterplot of dependent variable vs independent variable, whereas in the nonparametric regression, the shape of the curve is unknown. One of the nonparametric regression is spline regression. Spline regression is piecewise polynomials that connected by the knots. Spline regression using B Spline basis function is B Spline regression. In B spline regression, parameter estimation were fitted by OLS Ordinary Least Square method. However, the OLS method will lead the plot of estimated regression curve be fluctuative when using too much knots. Therefore, it needs additional constraint of penalty that contain smoothing parameter to obtain ideal fit result. This parameter estimation method known as PLS Penalized Least Square method. The estimate PLS method used penalty which is the integral of the square of second derivative of the estimate curve that called o 39 sullivan penalized spline method. In the application of sample data, 23 is used knots and the smoothing parameters is 0.68. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafa Khairun Nisa
"Dalam analisis regresi, terdapat dua pendekatan, yaitu pendekatan regresi parametrik dan pendekatan regresi nonparametrik. Dalam regresi parametrik, bentuk dari kurva regresi sudah diasumsikan, sedangkan dalam regresi nonparametrik, bentuk dari kurva regresi tidak diketahui. Salah satu regresi nonparametrik yang dapat digunakan adalah regresi spline dengan menggunakan truncated power basis. Regresi spline adalah suatu polinomial sepotong-sepotong yang dihubungkan oleh titik-titik bersama yang disebut dengan knot. Pada regresi spline, estimasi parameter dilakukan dengan menggunakan metode OLS (Ordinary Least Square). Namun, dengan metode OLS akan menyebabkan overparameterized dan pada plot taksiran kurva regresi akan terjadi fluktuatif apabila pemilihan jumlah knot terlalu banyak. Untuk itu, diperlukan suatu tambahan kendala yang didalamnya mengandung smoothing parameter sehingga diperoleh taksiran yang ideal. Metode estimasi parameter ini dikenal dengan metode PLS (Penalized Least Square). Regresi spline yang menggunakan estimasi parameter PLS (Penalized Least Square) disebut dengan regresi penalized spline. Pada contoh penerapan data, model terbaik dipilih untuk regresi penalized spline truncated power basis linier dengan 23 buah knot dan smoothing parameter sebesar 2.44.

In analysis regression, there are two approach, that is parametric regression approach and nonparametric regression approach. In parametric regression, the shape of regression curve is assumed, whereas in the nonparametric regression, the shape of curve is unknown. One of the nonparametric regression can be used is spline regression using truncated power basis. Spline regression is piecewise polynomials that connect at join points called knots. In spline regression, parameter estimation were fit by OLS (Ordinary Least Square) method. However, the OLS method will lead to overparameterized and in the plot of estimated regression curve will be fluctuative when using too much knots. Therefore, it needs an additional constraint which contain smoothing parameter, so that will result an ideally fit. This parameter estimation method known as PLS (Penalized Least Square) method. Spline regression that using PLS method is called by penalized spline regression. In the example application of data, the best model is choosen for penalized spline regression truncated power basis linear with 23 knots and smoothing parameter at 2.44."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S972
UI - Skripsi Open  Universitas Indonesia Library
cover
Ahmad Bilfarsah
"Metode Aditif Spline Kuadrat Terkecil Parsial (ASKTP) adalah suatu metode pengembangan dari metode Kuadrat Terkecil Parsial (MKTP). Metode ASKTP sangat cocok digunakan untuk mengatasi data yang bersifat non-linier dan memiliki sifat multikolinieritas diantara peubah-peubah prediktornya. Pada dasarnya, pendekatan dengan menggunakan metode ASKTP memiliki dua gagasan mendasar yaitu untuk menggunakan transformasi parameter prediktor dengan fungsi spline dan untuk membuat komponen-komponen dari ASKTP tidak saling berkorelasi (multikolinieritas) untuk menjaga sifat-sifat dari keliniearan komponen-komponen MKTP. Penelitian ini menyajikan perbanding antara metode ASKTP dan MKTP dalam penerapan di bidang ekonomi perikanan yaitu produksi ikan tuna

Efectivity of Additive Spline for Partial Least Square Method in Regression Model Estimation. Additive Spline of Partial Least Square method (ASPL) as one generalization of Partial Least Square (PLS) method. ASPLS method can be acommodation to non linear and multicollinearity case of predictor variables. As a principle, The ASPLS method approach is cahracterized by two idea. The first is to used parametric transformations of predictors by spline function; the second is to make ASPLS components mutually uncorrelated, to preserve properties of the linear PLS components. The performance of ASPLS compared with other PLS method is illustrated with the fisher economic application especially the tuna fish production."
Depok: Lembaga Penelitian Universitas Indonesia, 2005
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Rizky Adha
"ABSTRACT
Pemodelan regresi telah diterapkan dalam perbankan ritel karena kemampuannya dalam menganalisis data kontinu maupun diskrit. Hal tersebut merupakan alat yang penting dalam penilaian risiko kredit, stress testing, serta evaluasi aset kredit. Pada tugas akhir ini, pendekatan yang digunakan adalah dengan menggunakan model regresi logistik multinomial untuk mengetahui faktor-faktor yang memengaruhi terjadinya default dan attrition pada suatu kredit. Selain itu, pada tugas akhir ini juga akan diperkenalkan pendekatan regresi spline dengan menggunakan truncated power basis untuk memodelkan fungsi hazard. Fleksibilitas dari fungsi spline memberikan kemampuan untuk memodelkan fungsi hazard yang berbentuk nonlinier dan tidak beraturan. Kemudian, dengan menggunakan regresi spline dan regresi logistik multinomial, akan diperoleh sebuah hasil dan interpretasi yang lebih baik. Terdapat beberapa kelebihan dari penggunaan kedua model tersebut. Pertama, dengan menggunakan fungsi regresi spline yang fleksibel, dapat dimodelkan fungsi hazard yang berbentuk nonlinier dan tidak beraturan. Kedua, mudah dipahami dan diterapkan, dan bentuk parametrik model regresi logistik multinomial yang sederhana dapat memudahkan dalam interpretasi model. Ketiga, memiliki kemampuan untuk prediksi. Pada akhir pembahasan, dengan menggunakan sebuah data kartu kredit akan dilakukan pengaplikasian dari model regresi logistik multinomial dan regresi spline, dilengkapi dengan penjelasan secara statistika dan akurasi prediksi.

ABSTRACT
Regression modeling has been adapted in retail banking because of its capability to analyze the continuous and discrete data. It is an important tool for credit risk scoring, stress testing and credit asset evaluation. In this thesis, the approach used is multinomial logistic regression model to gain the information regarding the factors that affect the occurrence of default and attrition. In addition, this thesis will also introduce spline regression approach using truncated power basis to model the hazard function. The flexibility of spline function allows us to model the nonlinear and irregular shapes of the hazard functions. Then, by using spline regression and multinomial logistic regression model, there will be a better result and interpretation. There are several advantages by using those both models. First, by using the flexible spline regression function, it can model nonlinear and irregular shapes of the hazard functions. Second, it is easy to understand and implement, and its simple parametric form from multinomial logistic regression model can make it easy in model interpretation. Third, the model has the ability to do prediction. Furthermore, by using a credit card dataset, we will demonstrate how to build these model, and we also provide statistical explanatory and prediction accuracy."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lukman Salim
"Untuk merancang suatu objek grafik yang kompleks dan rumit secara praktis biasanya digunakan gabungan beberapa potongan polinomial. Gabungan potongan-potongan polinomial ini dikenal dengan spline. B-spline merupakan salah satu jenis spline yang banyak digunakan dalam Computer Aided Design. Penerapan prinsip blossoming pada kurva B-spline didasari ide adanya korespondensi satu-satu antara polinomial univariate berderajat n dengan polinomial n-variate simetrik berderajat satu untuk tiap variabelnya. Polinomial n-variate simetrik tersebut diistilahkan dengan blossom. Nilai blossom ini dikaitkan dengan titik kontrol objek B-spline yang bersangkutan. Dari kurva B-spline dapat dibentuk permukaan B-spline secara tensor product. Dalam Tugas Akhir ini dibangun sebuah program editor grafis berbasis Java di atas platform Windows ME. Program ini mampu melakukan visualisasi akan kurva B-spline dan permukaan B-spline tensor product. Manipulasi dan modifikasi terhadap hasil kurva dan permukaan juga dimungkinkan dalam program editor tersebut."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Universitas Indonesia, 1999
S27551
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rimbun Budiman
"Data Panel merupakan kombinasi dua jenis data yaitu data cross section dan data time series. Tujuan dari penulisan tugas akhir ini adalah mencari taksiran parameter pada model regresi untuk data panel yang tidak lengkap (incomplete panel data regression models) dengan komponen error satu arah (one-way error component). Selain itu model regresi tersebut merupakan random effect models, yang berarti perbedaan karakteristik individu dan waktu diakomodasikan pada komponen error dari model.
Metode yang digunakan untuk menaksir parameter adalah metode Feasible Generalized Least Squares (FGLS). Pada metode tersebut, matriks kovarians error tidak diketahui, sehingga perlu dilakukan penaksiran terhadap komponen variansi yang terdapat pada matriks kovarians error tersebut. Metode yang digunakan untuk menaksir komponen variansi adalah modifikasi metode penaksiran ANOVA yang diusulkan oleh Wallace dan Hussain."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khoirun Nisa
"ABSTRAK
Salah satu alternatif ukuran kekuatan prediksi yang dapat diterapkan pada model GLM dimana variabel responnya berdistribusi tidak hanya normal yaitu dengan menggunakan koefisien korelasi regresi regression correlation coefficient ndash; RCC . Koefisien korelasi regresi dibangun berdasarkan definisi koefisien korelasi dengan menggunakan model GLM. Sehingga RCC dapat didefinisikan sebagai nilai yang menyatakan kekuatan hubungan antara variabel respon dan ekspektasi bersyarat dari variabel respon. Koefisien korelasi regresi merupakan salah satu alternatif ukuran kekuatan prediksi yang dapat memenuhi sifat applicability, interpretability, consistency, dan affinity. Pada umumnya bentuk eksplisit dari RCC pada GLM sulit ditemukan. Namun, ketika RCC diterapkan pada model regresi Poisson dan variabel prediktor diasumsikan berdistribusi multivariat normal, maka akan ditemukan bentuk eksplisit. Bentuk eksplisit ini masih memuat parameter ndash; parameter dari model regresi Poisson yang tidak diketahui. Oleh karena itu, perlu dicari estimasi dari parameter - parameter tersebut sehingga diperoleh estimator dari RCC. Metode yang digunakan untuk mengestimasi parameter pada model regresi Poisson adalah metode maximum likelihood.
"
"
"ABSTRACT
"
The regression correlation coefficient RCC is one alternative measure of predictive power that can be applied to the GLM model in which the distribution of response variable is not only normal. The regression correlation coefficient is constructed based on the definition of correlation coefficient by using generalized linear model GLM . So, the RCC can be defined as a value that states the strength of the relationship between the response variable and the conditional expectation of the response variable. The regression correlation coefficient is one of predictable strength measure that can satiesfies the property like applicability, interpretability, consistency, and affinity. In general, the explicit form of RCC on GLM is difficult to find. However, when RCC is applied to the Poisson regression model and the predictor variable is assumed to be a normal multivariate distribution, an explicit form is found. This explicit form still contains the unknown parameters of the Poisson regression model. Therefore, we need to find an estimate of these parameters to obtain an estimator from the RCC. The method used to estimate the parameters in Poisson regression model is maximum likelihood method."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>