Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 198804 dokumen yang sesuai dengan query
cover
Edi Setiawan
"Teorema Menelaus dan Teorema Ceva merupakan teorema pada plane
geometry. Kedua teorema tersebut pertama kali dikemukakan pada segitiga, untuk
selanjutnya kedua teorema tersebut dapat berlaku juga pada poligon. Pada tugas
akhir ini akan dibahas pembuktian kedua teorema tersebut pada poligon
menggunakan perbandingan luas pada segitiga.
Kata kunci: Teorema Menelaus, Teorema Ceva, perbandingan luas segitiga, plane
geometry, dan poligon.
vi + 33 hlmn.;lamp.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27716
UI - Skripsi Open  Universitas Indonesia Library
cover
"Teorema Menelaus dan Teorema Ceva merupakan teorema pada plane geometry. Kedua teorema tersebut pertama kali dikemukakan pada segitiga, untuk selanjutnya kedua teorema tersebut dapat berlaku juga pada poligon. Pada tugas akhir ini akan dibahas pembuktian kedua teorema tersebut pada poligon menggunakan perbandingan luas pada segitiga."
Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ghina Hanny Fairuz Hasna
"Aljabar Banach adalah ruang Banach yang dilengkapi dengan operasi biner perkalian yang kontinu. Teorema Mazur mengatakan bahwa setiap aljabar Banach pembagian atas lapangan bilangan real isomorfik dengan salah satu aljabar R, C, atau quaternion Q. Lebih lanjut, Gelfand kemudian membuktikan bahwa setiap aljabar Banach pembagian atas lapangan bilangan kompleks isomorfik dengan C.
Bukti asli dari Gelfand menggunakan teori fungsi harmonik dan persamaan integral namun pada skripsi ini dibuktikan Teorema Gelfand-Mazur menggunakan sifat-sifat dari aljabar bernorm.
Skripsi ini juga membahas teori transformasi Gelfand yang diturunkan dari Teorema Gelfand-Mazur serta hubungan antara fungsional linier multiplikatif dan ruang ideal maksimal. Transformasi Gelfand digunakan untuk membuktikan Teorema Wiener yang menyebutkan bahwa jika f bukan fungsi nol dan memiliki deret Fourier dengan koefisien yang konvergen mutlak maka 1=f juga memiliki sifat yang sama.

Banach algebras are Banach spaces equipped with continuous binary operation of multiplication. The Mazur theorem states that every division Banach algebra over the field of real numbers is isomorphic to either the algebra R, C, or the quaternion Q. Gelfand then proved that every division Banach algebra over the field of complex numbers is isomorphic to C. The original proof by Gelfand was based on the theory of harmonic functions and integral equations but in this skripsi we prove the Gelfand-Mazur theorems using only the properties of normed algebra.
This skripsi discussed the theory of Gelfand transform, which was derived from the Gelfand-Mazur Theorem and also the connection between multiplicative linear functional space and maximal ideal space. The Gelfand Transform was used to prove the Wiener Theorem which states that if f is a non-zero function and has an absolutely convergent Fourier expansion then 1=f has such an expansion as well."
2016
S62425
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bernard Immanuel
"ABSTRACT
Grup permutasi merupakan konsep yang penting dalam teori grup dan juga
pemodelan. Oleh karena itu, Teorema Cayley yang menyatakan bahwa sembarang
grup isomorfis dengan suatu subgrup dari suatu grup permutasi memiliki peran
yang penting dalam teori grup. Saat ini, bukti dari Teorema Cayley yang dikenal
secara umum dilakukan dengan mengonstruksi isomorfisma pada subgrup dari
suatu grup permutasi yang bersesuaian. Selain bukti dengan konstruksi, Lema
Yoneda yang terdapat dalam teori kategori dapat digunakan untuk membuktikan
Teorema Cayley. Untuk sembarang grup G dapat dibuat suatu kategori dengan satu
objek } dan himpunan morfisma hom(};}) = G serta komposisi morfisma
a  b = ba. Teorema Cayley dapat dibuktikan dengan mengaplikasikan Lema
Yoneda pada kategori ini beserta fungtor yang bersesuaian.

ABSTRACT
Permutation group is an important concept in group theory and modeling.
Therefore, Cayley Theorem which states that any group is isomorphic to some
subgroup of some permutation group plays an important role in group theory.
Now, the well-known proof of Cayley Theorem is done by constructing an
isomorphism to an appropriate subgroup of a permutation group. On the other
hand, Yoneda Lemma which is a part of category theory can also be used to prove
Cayley Theorem. For any group G, consider a category consisting of one object }
and a set of morphisms hom(};}) = G with composition of morphisms
a  b = ba. By applying Yoneda Lemma on this category with an appropriate
functor, Cayley Theorem can be proved."
2014
S53106
UI - Skripsi Membership  Universitas Indonesia Library
cover
Murtiningrum
"Misalkan 𝐺𝐺(𝑝𝑝, 𝑞𝑞) adalah sebuah graf dengan 𝑝𝑝 = |𝑉𝑉(𝐺𝐺) | dan 𝑞𝑞 = |𝐸𝐸(𝐺𝐺) | masing-masing adalah banyaknya simpul dan busur dari 𝐺𝐺. Pelabelan total (a, d)-busur anti ajaib ((a, d)-PTBAA) dari sebuah graf 𝐺𝐺(𝑝𝑝, 𝑞𝑞) adalah sebuah pemetaan satu-satu f dari 𝑉𝑉(𝐺𝐺) ∪ 𝐸𝐸(𝐺𝐺) ke himpunan {1, 2,?, 𝑝𝑝 + 𝑞𝑞} sedemikian hingga himpunan bobot busur { 𝑓𝑓(𝑢𝑢) + 𝑓𝑓(𝑢𝑢𝑢𝑢) + 𝑓𝑓(𝑣𝑣) ∶ 𝑢𝑢𝑢𝑢 ∈ 𝐸𝐸(𝐺𝐺)} sama dengan {𝑎𝑎, 𝑎𝑎 + 𝑑𝑑, 𝑎𝑎 + 2𝑑𝑑,?, 𝑎𝑎 + (𝑞𝑞 − 1)𝑑𝑑 } untuk suatu bilangan bulat a > 0 dan d ≥ 0. Jika 𝑓𝑓(𝑉𝑉) = {1, 2,?, 𝑝𝑝} maka pelabelan f disebut pelabelan total super (a, d)-busur anti ajaib ((a, d)-PTSBAA), dan jika d = 0 maka pelabelan f disebut juga pelabelan total busur ajaib (PTBA). Pada tesis ini dibangun suatu konstruksi (a, d)-PTBAA pada gabungan m graf korona 𝐶𝐶𝑛𝑛 ⊚ 𝑃𝑃2 isomorfik untuk 𝑑𝑑 = 0 dan 𝑑𝑑 = 2, dan gabungan m graf prisma 𝐶𝐶𝑛𝑛 × 𝑃𝑃2 isomorfik untuk 𝑑𝑑 = 0, 𝑑𝑑 = 1 dan 𝑑𝑑 = 2.

Let 𝐺𝐺(𝑝𝑝, 𝑞𝑞) is a graph with 𝑝𝑝 = |𝑉𝑉(𝐺𝐺) | and 𝑞𝑞 = |𝐸𝐸(𝐺𝐺) | be respectively the number of vertices and the number of edges of 𝐺𝐺. An (a, d)-edge antimagic total labeling ((a, d)-EAT labeling) of a 𝐺𝐺(𝑝𝑝, 𝑞𝑞) graph is defined as a one-to-one mapping f from 𝑉𝑉(𝐺𝐺) ∪ 𝐸𝐸(𝐺𝐺) onto the set {1, 2,?, 𝑝𝑝 + 𝑞𝑞}, so that the set of weight { 𝑓𝑓(𝑢𝑢) + 𝑓𝑓(𝑢𝑢𝑢𝑢) + 𝑓𝑓(𝑣𝑣) ∶ 𝑢𝑢𝑢𝑢 ∈ 𝐸𝐸(𝐺𝐺)} is equal to {𝑎𝑎, 𝑎𝑎 + 𝑑𝑑, 𝑎𝑎 + 2𝑑𝑑, ?,𝑎𝑎+𝑞𝑞−1𝑑𝑑 for two integer a > 0 and d ≥ 0. If 𝑓𝑓𝑉𝑉=1, 2, ?, 𝑝𝑝 then f labeling is called super (a, d)-edge antimagic total labeling (super (a, d)-EAT labeling) and when d = 0 then f labeling is called edge magic total labeling (EMT labeling). In this thesis was constructed (a, d)-EAT labeling on union of isomorphic corona 𝐶𝐶𝑛𝑛 ⊚ 𝑃𝑃2 graphs for 𝑑𝑑 = 0 and 𝑑𝑑 = 2, and union of isomorphic prisms 𝐶𝐶𝑛𝑛 × 𝑃𝑃2 graphs for 𝑑𝑑 = 0, 𝑑𝑑 = 1 and 𝑑𝑑 = 2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T30062
UI - Tesis Open  Universitas Indonesia Library
cover
Teguh Sutriono
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S617
UI - Skripsi Open  Universitas Indonesia Library
cover
Timothy Harel
"Misalkan G(p,q) adalah suatu graf dengan p simpul dan q busur dengan himpunan simpul V dan himpunan busur E. Suatu graf G(p,q) dikatakan harmonis ganjil jika terdapat fungsi injektif f: V(G) → {0,1,2,….,2q-1} sedemikian sehingga menginduksi pemetaan f*(uv) = f(u) + f(v) yang merupakan fungsi bijektif f*: E(G) → {1,3,5,….,2q-1}. Pelabelan harmonis ganjil untuk graf korona, (Cn⊚Kr Komplemen) dan graf gabungan korona isomorfis, m(Cn⊚Kr Komplemen) untuk n ≡ 0(mod 4) sudah diketahui. Pada skripsi ini akan diberikan konstruksi pelabelan harmonis ganjil pada graf korona (Cn⊚Kr Komplemen) dan graf gabungan korona isomorfis, m(Cn⊚Kr Komplemen) untuk n ≡ 2(mod 4) sebagai pelengkap dari hasil yang sudah ada.

Let G(p,q) be a graph with p vertices and q edges with set of vertices V and set of edges E. A graph G (p, q) is said to be odd harmonious if there exists an injection f: V(G) → {0,1,2,…,2q-1}, such that induced mapping f* (uv) = f(u) + f(v) is a bijection f*: E(G) → {1,3,5,…,2q-1}. Odd harmonious labeling for corona graph, (Cn⊚Kr Complement) and union of isomorphic corona graphs, m(Cn⊚Kr Complement) for n ≡ 0(mod 4) have been found. In this skripsi, it will be given a construction of an odd harmonious labeling on the corona graph, C_n⊚(K_r ) ̅ and union of isomorphic corona graph, m(Cn⊚Kr Complement) for n ≡ 2(mod 4) as a complement of the known result.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S58393
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jamaludin Malik Ibrahim
"Invers Moore-Penrose merupakan perumuman invers pada matriks bujur sangkar. Setiap matriks dengan entri bilangan kompeks memiliki invers Moore-Penrose dan invers Moore-Penrose dari suatu atriks adalah tunggal. Ketunggalan invers Moore-Penrose dapat digunakan sebagai pengganti invers pada matriks persegi maupun persegi panjang. Dalam skripsi ini, dibahas konstruksi invers Moore-Penrose melalui f1g􀀀invers, f1;2g􀀀invers, f1;2;3g􀀀invers, f1;2;4g􀀀invers, f1;3g􀀀invers, dan f1;4g􀀀invers. Kemudian, dibahas pula konstruksi invers Moore-Penrose dari matriks Laplacian dan beberapa sifat invers Moore-Penrose dari matriks Laplacian. Pada Teorema 4.4, invers Moore-Penrose dari matriks Laplacian memenuhi persamaan LL† = L†L = I􀀀 1n J, dengan J merupakan matriks berukuran nn yang setiap entrinya bernilai satu. Sehingga, invers Moore-Penrose dari matriks Laplacian dapat digunakan sebagai pengganti invers matriks Laplacian.

Moore-Penrose inverse is a generalized inverse from square matrices. Every matrix with complex entries has a unique Moore-Penrose inverse. Uniqueness of Moore-Penrose inverse can be used as a substitute inverse on square or rectangular matrices. In this skripsi, the construction of Moore-Penrose inverse is explain through f1g􀀀inverse, f1;2g􀀀inverse, f1;2;3g􀀀inverse, f1;2;4g􀀀inverse, f1;3g􀀀invers, and f1;4g􀀀invers. Moreover, the construction of Moore-Penrose inverse for Laplacian matrices, as well as some properties of the inverse, is also discussed. In Theorem 4.4, Moore-Penrose inverse satisfy the equation LL† = L†L = I􀀀 1 nJ, where J is an nn matrix with all entries are one.;Moore-Penrose inverse is a generalized inverse from square matrices. Every matrix with complex entries has a unique Moore-Penrose inverse. Uniqueness of Moore-Penrose inverse can be used as a substitute inverse on square or rectangular matrices. In this skripsi, the construction of Moore-Penrose inverse is explain through f1g􀀀inverse, f1;2g􀀀inverse, f1;2;3g􀀀inverse, f1;2;4g􀀀inverse, f1;3g􀀀invers, and f1;4g􀀀invers. Moreover, the construction of Moore-enrose inverse for Laplacian matrices, as well as some properties of the inverse, is also discussed. In Theorem 4.4, Moore-Penrose inverse satisfy the equation LL† = L†L = I􀀀 1 nJ, where J is an nn matrix with all entries are one."
2016
S62417
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Penelitian ini bertujuan untuk merancang pengembangan produk yaitu : 1) merancang tes diagnostik matematika di SD, 2) merancang buku pedoman penggunaan tes diagnostik untuk guru mengajar dan 3) melaksanakan uji coba terbatas...."
Artikel Jurnal  Universitas Indonesia Library
cover
Nur Ali Muchtar
"Misalkan G = (V,E) adalah graf sederhana dengan v simpul dan e busur. Pelabelan total busur ajaib pada graf G adalah pemetaan bijektif f dari VUE ke himpunan bilangan bulat positif berurutan { 1,2,3, ..., v+e } sehingga bobot semua busur adalah konstan. Pelabelan total busur ajaib dengan f (E) = { b+1,b+2,b+3, ..., b+e },0 <_ b <_ v disebut pelabelan total busur-ajaib b-busur berurutan. Jika suatu graf memiliki pelabelan total busur-ajaib b-busur berurutan maka banyak maksimum busur pada G adalah v - 1 atau dengan kata lain e <_ v - 1. Suatu graf dengan e > v - 1 masih bisa dilabel dengan pelabelan total busur-ajaib b-busur berurutan dengan menambahkan sejumlah simpul terisolasi sehingga memenuhi e <_ v - 1. Pada makalah ini akan dikonstruksi pelabelan total busur-ajaib b-busur berurutan untuk graf kecebong dan graf dumbbell dengan menambahkan simpul-simpul terisolasi sehingga memenuhi e <_ v - 1.

Let G = (V,E) be a simple graph with v vertices and e edges. An edge magic total labeling of a graph G is a bijection f from VUE onto the set of consecutive positive integers { 1,2,3, ..., v+e } so that the weight of all edges are constant. An edge magic total labeling with f (E) = { b+1,b+2,b+3, ..., b+e } 0 <_ b <_ v is called b-edge consecutive edge magic total labeling. If a graph has a b-edge consecutive edge magic total labeling, then the maximum number of edges in G is v - 1 or e <_ v - 1. A graph with e > v - 1 can be labeled with b-edge consecutive edge magic total labeling by adding some isolated vertices to G in order to satisfy e <_ v - 1. In this skripsi we give the construction of a b-edge consecutive edge magic total labeling on tadpole graphs and dumbbell graphs by adding some isolated vertices to satisfy e <_ v - 1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S208
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>