Ditemukan 82655 dokumen yang sesuai dengan query
Puspa Cempaka Sari Putri
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27878
UI - Skripsi Open Universitas Indonesia Library
Puspa Cempaka Sari Putri
"Data survei biasanya dimanfaatkan oleh pemerintah suatu negara sebagai dasar untuk membuat kebijakan yang bertujuan untuk mengatasi masalah yang sedang dihadapi. Agar kebijakan yang dibuat tepat sasaran, kelompok daerah yang sangat bermasalah harus menjadi prioritas. Oleh karena itu, digunakan metode spatial scan statistics yang bertujuan untuk mendeteksi kelompok daerah bermasalah tersebut.
Survei umumnya didesain untuk memperoleh kesimpulan pada daerah yang besar (lingkup nasional). Masalah terjadi ketika dari data survei tersebut ingin diperoleh informasi mengenai area yang lebih kecil, misalnya informasi pada tingkat kecamatan. Ukuran sampel pada area tersebut biasanya sangat kecil sehingga statistik yang diperoleh akan memiliki ragam yang besar. Bahkan mungkin penaksiran tidak dapat dilakukan karena area tersebut tidak terpilih menjadi sampel dalam survei. Sehingga kesimpulan yang dihasilkan mungkin tidak dapat menggambarkan keadaan populasi yang sebenarnya. Untuk mengatasi masalah tersebut, digunakan metode Empirical Bayes pada Small Area Estimation (SAE) untuk memperbaiki penaksiran parameter small area yang akan digunakan pada metode spatial scan statistics.
Dengan metode Empirical Bayes pada SAE, dihasilkan penaksiran proporsi sukses untuk setiap small area yang digunakan sebagai informasi tentang subpopulasi pada metode spatial scan statistics. Selanjutnya menggunakan metode spatial scan statistics dideteksi kelompok small area dengan proporsi sukses tertinggi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Dian Fitriyani
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27851
UI - Skripsi Open Universitas Indonesia Library
Benjamin, Jack C.
New York: McGraw-Hill, 1970
519.54 BEN p
Buku Teks Universitas Indonesia Library
Ibrahim Fajar
"Penyakit kronis merupakan salah satu permasalahan bidang kesehatan yang cukup serius di seluruh dunia. Menurut WHO tahun 2017, 70 penyebab kematian di seluruh dunia diakibatkan oleh penyakit kronis.Pemerintah telah membuat beberapa kebijakan seperti kebijakan yang diatur dalam Peraturan Menteri Kesehatan Republik Indonesia nomor 71 tahun 2017 untuk mengatasi masalah penyakit kronis tersebut. Data dan informasi terkait banyaknya pegidap penyakit kronis diperlukan untuk menginformasikan keberhasilan dari pelaksanaan kebijakan tersebut.
Tujuan dari penelitian ini adalah untuk mengetahui proporsi pengidap penyakit kronis pada kecamatan Duren Sawit. Data yang digunakan dalam penelitian ini adalah data primer berupa data survei secara langsung serta data sekunder berupa data sensus dari Dinas Kesehatan Dinkes 2017 dan Badan Pusat Statistika BPS 2017. Metode sampling yang digunakan adalah probability sampling, yaitu simple random sampling dengan ukuran sampel sebesar 1 dari total kepala keluarga yang tinggal di kecamatan Duren Sawit, yaitu sebanyak1229 kepala keluarga. Pada penaksiran langsung, menduga suatu parameter hanya berdasarkan data survei dari subpopulasi merupakan tindakan yang kurang tepat, dikarenakan ukuran sampel yang didapat relatif sedikit atau terdapat subpopulasi yang tidak terpilih menjadi sampel.
Untuk mengatasi hal tersebut, akan dilakukan penaksiran tidak langsung dengan metode small area estimation SAE, yaitu meminjam informasi tambahan seperti data administratif atau data sensus dari area lain atau area itu sendiri serta adanya penambahan pengaruh acak area ke dalam model. Pada penelitian ini, akan dicari taksiran proporsi pengidap penyakit kronis di kecamatan Duren Sawit menggunakan penaksiran langsung dan penaksiran tidak langsung dengan metode hierarchical Bayes pada SAE. Hasil taksiran yang didapat dari penaksiran langsung dan penaksiran tidak langsung akan dibandingkan nilai variansinya untuk menentukan taksiran mana yang lebih reliable.
Chronic disease is one of the health problems that are serious enough in the rest of the world. According to WHO 2017, 70 of the causes of deaths worldwide are caused by chronic disease. The Government has made some policies such as the policy that is set in a regulation of the Minister of health of the Republic of Indonesia number 71 years 2017 to control problem of chronic disease. Data and information related to the chronic diseases sufferer are required to inform the success of the implementation of the policy. The purpose of this research is to know the proportion of chronic disease sufferer in the subdistrict Duren Sawit. The data used in this research is the primary data in the form of survey data directly as well as secondary data in the form of census data from Dinas Kesehatan Dinkes 2017 and Badan Pusat Statistik BPS 2017. The sampling method used is probability sampling, thesimple random sampling with a sample size is 1 of the total heads of families living in the subdistrict Duren Sawit, that is 1229 heads of families. On direct estimation, estimating a parameter only based on survey data of subpopulations is inappropriate action, because the sample size that obtained from subpopulations relatively few or there is a subpopulation that is not selected as the sample. To overcome this, indirect estimation will be carried out with small area estimation SAE methods, which borrowed extra information such as administrative data or census data from other areas or area itself and there rsquo s an addition random area effect into the model. In this study, will look estimation of proportion for people with chronic diseasein subdistrict Duren Sawit use direct estimation and indirect estimation with hierarchical Bayes at SAE method. The results of the estimates obtained from the valuation of the direct and indirect estimation will be compared to the value of variance to determine which estimates are more reliable."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Yudistira
"Dalam penerapan statistika di masyarakat, metode pengambilan sampel dilakukan untuk mendapatkan informasi tentang populasi yang menjadi fokus pengamatan. Namun karena keterbatasan dalam menjalankan metode pengambilan sampel, banyaknya sampel tersebut seringkali tidak mencukupi untuk mendapatkan taksiran yang presisi untuk populasi. Oleh karena itu, dikembangkan beberapa metode alternatif untuk menaksir parameter tersebut dengan area sampel yang jumlahnya kecil yang dibahas dalam topik Small Area Estimation. Dalam skripsi ini, dijelaskan tentang bagaimana mencari taksiran titik dari rata-rata populasi pada Small Area dengan metode Empirical Bayes berdasarkan model tingkat area. Secara umum, metode ini diawali dengan pendefinisian Model Spasial Tingkat Area, yaitu model dasar tingkat area dengan tambahan definisi model efek acak spasial pada . Model tersebut selanjutnya menjadi dasar untuk menaksir parameter rata-rata populasi dengan menggunakan Metode Empirical Bayes. Pada bagian akhir skripsi ini juga diberikan contoh penerapan metode Spatial Empirical Bayes untuk menaksir tingkat kemiskinan di Kota Depok pada tahun 2012.
In the application of statistics in society, sampling methods are conducted to obtain information about the populations that become a focus of observation. However, due to limitations in carrying out of sampling methods, the number of samples is often not sufficient to obtain precise estimates for the population. Therefore, several alternative methods are developed for estimating the parameters with a small number of sample areas which has covered in the topics Small Area Estimation. This paper is described about how to find a point estimation of population mean on small area with Empirical Bayes method based on area level model. In general, this method starts with defining the Spatial Area Level Model, which is the basic area level model with an additional definition of spatial random effects model for . That model then becomes basis for estimate parameter of population mean using Empirical Bayes methods. At the end, this paper also give an example of the application of Spatial Empirical Bayes methods for estimating poverty in Depok in 2012."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S56956
UI - Skripsi Membership Universitas Indonesia Library
Aldila Fitrilia
"
ABSTRAKAnalisis survival merupakan analisis statistika yang digunakan untuk menyelidiki waktu tahan hidup suatu benda atau individu pada keadaan tertentu. Dalam melakukan analisis survival dibutuhkan data survival yang meliputi waktu survival dan status waktu survival dari objek yang diteliti. Data survival yang diperoleh dapat berupa data lengkap atau data tidak lengkap. Data tidak lengkap data tersensor dapat berupa data tersensor kanan, kiri, atau interval. Data tersensor kanan dapat berupa data tersensor kanan tipe I atau data tersensor kanan tipe II. Dalam penelitian ini akan digunakan data tersensor kanan tipe II. Fungsi survival yang akan digunakan adalah fungsi survival dari distribusi Lomax. Distribusi Lomax memiliki dua paremeter, yaitu parameter bentuk dan parameter skala. Dalam penelitian ini, parameter yang akan ditaksir adalah parameter bentuk dengan asumsi parameter skala telah diketahui. Metode yang digunakan dalam penelitian ini adalah metode Bayes. Penelitian ini akan menggunakan prior Gamma sebagai distribusi conjugate prior dan fungsi Loss yang akan digunakan dalam penelitian ini adalah balanced squared error loss function BSELF .
ABSTRACTSurvival analysis is a statistical analysis used to investigate the life time of an object or an individual in a special case. In survival analysis, survival data is needed which includes the survival time and status of the survival time of the object under study. The survival data obtained can be either complete data or incomplete data. Incomplete data censored data can be either right, left, or interval censored data. The right censored data can be either right censored data type I or type II. In this study will be used the right censored data type II. The survival function to be used is the survival function of the Lomax distribution. The Lomax distribution has two parameters, that is the shape parameter and the scale parameter. In this study, the parameter will be estimate is the shape parameter with the assumption of scale parameters has been known. The method used in this study is Bayes method. This study will use prior Gamma as conjugate prior distribution and Loss function will be used in this study is balanced squared error loss function BSELF."
2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Sisca Agnessia
"Dalam Penelitian ini akan dicari taksiran mean stratum pada sampling acak stratifikasi. Pada sampling acak stratifikasi, seringkali hanya tersedia beberapa pengamatan pada masing-masing strata. Kecilnya ukuran sampel akan menyebabkan penaksir langsung dari mean stratum menjadi kurang tepat. Metode alternatif yang dapat digunakan untuk menaksir mean dari stratum adalah dengan menggunakan metode Empirical Bayes. Metode Empirical Bayes digunakan untuk mencari taksiran mean stratum pada sampling acak stratifikasi dengan cara menggabungkan informasi awal atau informasi yang telah tersedia sebelumnya tentang parameter yang akan ditaksir dengan informasi dari data sampel. Informasi awal disebut juga informasi prior. Penggabungan dari informasi prior dan informasi dari data akan menghasilkan informasi posterior. Dalam metode Empirical Bayes, informasi prior tidak tersedia sehingga informasi prior diestimasi dari data.
In this research will find the estimated stratum mean in stratified random sampling. In the stratified random sampling, often only available a few observations in each strata. The small sample size would cause a direct estimator of the mean stratum becomes less precise. Alternative methods that can be used to estimate the mean of the stratum is to use the Empirical Bayes method. Empirical Bayes methods used to find the estimated mean stratum in stratified random sampling by combining the initial information or information that has been available previously on the parameters to be estimated with information from the data sample. Preliminary information also known as prior information. The incorporation of prior information and information from the data will result in posterior information. In the Empirical Bayes method, prior information is not available so the information estimated from prior data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45105
UI - Skripsi Membership Universitas Indonesia Library
Dian Fitriyani
"Berdasarkan UU RI no.7 tahun 1996, ketahanan pangan adalah kondisi terpenuhinya pangan bagi rumah tangga yang tercermin dari tersedianya pangan yang cukup, baik jumlah maupun mutunya, aman, merata dan terjangkau. Jika kondisi ini tidak terpenuhi maka akan terjadi kerawanan pangan. Dalam Penelitian ini akan dicari taksiran proporsi terjadinya rawan pangan pada kecamatan di kabupaten Bondowoso. Dalam mencari proporsi di tingkat kecamatan digunakan Small Area Estimation (SAE). Small Area Estimation merupakan suatu teknik statistika untuk menduga parameter-parameter subpopulasi yang ukuran sampelnya kecil. Teknik penaksiran ini memanfaatkan data dari domain besar (seperti sensus, survey) untuk menaksir parameter yang menjadi perhatian domain yang lebih kecil. Salah satu metode yang digunakan dalam Small Area Estimation adalah metode Empirical Bayes. Metode Empirical Bayes digunakan untuk mencari taksiran parameter pada small area dengan cara menggunakan informasi dari direct survey estimator dan dari variabel pendukung yang tersedia di setiap small area. Dalam metode Empirical Bayes, informasi prior tidak tersedia sehingga informasi prior dapat diestimasi dari sampel. Untuk mengukur seberapa baik taksiran parameter yang diperoleh digunakan Mean Square Error (MSE). Dalam penelitian ini akan ditunjukkan bahwa MSE dari penaksir EB akan lebih kecil dibandingkan dengan MSE dari penaksir langsung."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Yuridunis Saidah
"Kemiskinan berdasarkan buku Analisis dan Perhitungan Tingkat Kemiskinan 2008, ditentukan berdasarkan ketidakmampuan untuk mencukupi kebutuhan pokok minimum seperti pangan, sandang, kesehatan, perumahan, dan pendidikan yang diperlukan untuk dapat hidup dan bekerja. Kebutuhan pokok minimum diterjemahkan sebagai ukuran finansial dalam bentuk uang. Nilai kebutuhan pokok minimum tersebut dikenal dengan istilah garis kemiskinan. Jadi penduduk miskin adalah penduduk yang memiliki rata-rata pengeluaran perkapita per bulan di bawah Garis Kemiskinan (GK). Data dan informasi kemiskinan yang akurat dan tepat sasaran sangat diperlukan untuk memastikan keberhasilan pelaksanaan program – program penanggulangan kemiskinan khususnya untuk tingkat daerah yang lebih kecil seperti kecamatan maupun kelurahan/desa. Dalam tugas akhir ini akan ditaksir proporsi kemiskinan di setiap kecamatan di Kabupaten Gresik. Populasi dalam penelitian tugas akhir ini adalah seluruh rumah tangga di Kabupaten Gresik. Sampel diambil diambil secara acak dari data survei BPS 2008. Untuk menaksir proporsi kemiskinan di setiap kecamatan di Kabupaten Gresik digunakan metode Hierarchical Bayes (HB) pada Small Area Estimation (SAE) dan dilakukan penaksiran langsung. Setelah diperoleh hasil taksiran dengan menggunakan penaksiran langsung dan metode HB, akan dibandingkan variansi penaksiran langsung dan variansi metode HB. Diperoleh bahwa variansi metode HB lebih kecil dibandingkan variansi penaksiran langsung sehingga taksiran metode HB lebih akurat."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library