Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 149673 dokumen yang sesuai dengan query
cover
Moch. Syamtidar Apriansyah
"Beton teraerasi merupakan salah satu alternatif material pracetak untuk bangunan residensial, highrise atau lowrise building, baik sebagai pengganti batu bata, dinding partisi, pelat lantai ataupun. Hal ini karena sifat daripada beton teraerasi yang mudah dicetak ataupun dipotong menjadi ukuran-ukuran yang diinginkan menggunakan gergaji kayu / gergaji mesin serta kemudahan pada saat instalasi karena beratnya yang ringan, kemudian umur beton teraerasi yang lebih cepat matang dibandingkan dengan beton ringan menjadikannya memiliki nilai jual yang lebih. Kemudian limbah yang dihasilkan lebih sedikit bila dibandingkan dengan penggunaan beton biasa. Untuk mendapatkan kekuatan yang optimal, beton teraerasi harus melalui autoclave (12 bar) selama 12 jam. Karena biaya investasi cikup mahal, proses ini digantikan dengan pemberian tekanan uap panas / steam menggunakan pressto cooker (0,8 bar) selama 15 jam. Pada penelitian ini penulis menoba untuk mengetahui pengaruh penambahan aerated agent (alumunium yang berbentuk serbuk dan H2O2) kedalam campuran beton teraerasi yang terdiri dari semen, kapur, pasir dan air, serta pengaruh pemberian tekanan uap panas / steam terhadap kekuatan, densitas, dan pertambahan volume, serta mencari proporsi yang optimal dari beton teraerasi. Dari hasil percobaan diperoleh kuat tekan 0.5826 MPa dengan densitas 0.52 gram/cm3 pada penggunaan alumunium dan jika di steam kuat tekannya 0.0784 Mpa dan densitas 0,492 gram/cm3. Pada penggunaan H2O2 kuat tekannya 1.225 MPa dengan densitas 0.76 gram/cm3 dan jika di steam kuat tekannya 0.784 Mpa dengan densitas 0.828 gram/cm3. Untuk membuat 1 m3 beton terarasi dibutuhkan 1,6 kg dan 25,6 kg air atau 19,2 kg H2O2 (30 % air), 200 kg Semen Portland, 480 kg Pasir Silika, dan 40 kg Kapur. Harga 1 m3 batu bata adalah Rp.291.550,- sedangkan bila menggunakan beton teraerasi dengan aerated agent H2O2 biaya yang dibutuhkan adalah Rp.463.000,-

Aerated Concrete is one of the alternatif material precast for resedencial building, highrise or lowrise biulding, or can be used as a brick subtitute, wall partition, slab fluor etc. This is because characteristic of aerated concrete which easyly to precast or slice or cut to be size which we want using saw / saw machine and easy for instalation because the lihgt weight, then the age of aerated concrete which already faster then ordinary concrete make it have more valueable. This also produce waste less than ordinary concrete. To get an optimal strength, aerated concrete must through autoclave process at the time of 12 hour with 12 bar pressure. Because the investation cost very expensive, this process subtituted by steam using pressto cooker at the time of 15 hour with 0,8 bar pressure. On this research the author try to find out influence from the add of aerated agent into concrete mix which contain of portland cement, limestone, silica coarse, and water, and to find out influence added of steam to strength, density, and the increase of volume, and find the optimal proportion of aerated concrete. From this reasearch the compressive strength is 0.5826 MPa with density 0.52 gram/cm3 and if through steam process the compressive strength become 0.0784 Mpa with density 0,492 gram/cm3. If using H2O2 the compressive strength is 1.225 MPa with density 0.76 gram/cm3 and if through steam process the compressive strength become 0.784 Mpa with density 0.828 gram/cm3. To made 1 m3 aerated concrete needs 1,6 kg Alumunium and 25,6 kg water or 19,2 kg H2O2 (30 % water), 200 kg Portland Cement, 480 kg Silica Coarse, and 40 kg lime stone. The price of 1 m3 brick is Rp.291.550,- and if using aerated concrete with aerated agent H2O2 the price is Rp.463.000,-"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S35144
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gultom, Rafles Parada
"Konkrit teraerasi dapat dikarakterisasi dengan adanya pori-pori dalam matriks konkrit untuk mengurangi densitasnya. Konkrit teraerasi ini umumnya diproduksi dengan metoda curing di dalam autoclave. Akan tetapi, produksi konkrit teraerasi yang harus menggunakan autoclave membutuhkan biaya yang besar. Untuk menekan biaya produksi, eliminasi autoclave menjadi pilihan yang terbaik. Penelitian ini difokuskan pada pengaruh pasta aluminium (A% dan B%) dan hidrogen perosida (P%, Q%, R%, S%, T % dan U%) sebagai agen pengaerasi pada konkrit teraerasi dengan metoda curing di udara terbuka selama 28 hari (non autoclaved). Setelah masa curing selesai, pengujian densitas dan kekuatan tekan dan kemudian dibandingkan dengan hasil pengujian konkrit AAC Hebel. Pengamatan struktur mikro juga dilakukan pada perbesaran 150 dan 1000 kali. Hasil pengujian menunjukkan bahwa penambahan pasta aluminium akan meningkatkan nilai densitas dan nilai kekuatan tekan untuk konkrit teraerasi tanpa autoclave dan penambahan H2O2 akan meningkatkan nilai densitas konkrit teraerasi akan tetapi nilai kekuatan tekan optimum sebesar 3.43 MPa diperoleh pada saat R% H2O2. Nilai densitas yang terrendah dimiliki oleh konkrit dengan agen pengaerasi H2O2 yaitu sebesar 0.91 g/cm3 dengan P% H2O2 dan nilai kekuatan tekan yang tertinggi dimiliki oleh konkrit dengan agen pengaerasi H2O2 yaitu sebesar 3.43 MPa dengan R% H2O2.

Aerated concrete is characterized by the presence of pores in its matrix to reduce density. This aerated concrete is generally produced by curing in autoclave. However, aerated concrete produced in autoclaving needs a lot of cost. In order to reduce the production cost, eliminating autoclave is the best choice. This research is focused in the effect of aluminum paste (A% and B%) and hydrogen peroxide (P%, Q%, R%, S%, T% and U%) as aerating agent in aerated concrete by curing time 28 days (non autoclaved aerated concrete). After curing time, the density and compressive strength tests are conducted then the results will be compared to the AAC Hebel's. Microstructure observation is also conducted in 150 and 1000 magnificence. The test results indicate that increasing aluminum paste will increase the density and compressive strength for non autoclaved aerated concrete and increasing hydrogen peroxide will increase the density but the optimum compressive strength (3.43MPa) is gained at R% H2O2. The lowest density is 0.91 g/cm3 at P% H2O2 and the highest compressive strength is 3.43 MPa at R% H2O2."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S41805
UI - Skripsi Membership  Universitas Indonesia Library
cover
Radinta Safa Maharani
"Autoclaved Aerated Concrete (AAC) merupakan bahan bangunan ramah lingkungan yang berfungsi sebagai alternatif bahan baku bangunan. AAC dibuat dengan memanfaatkan kembali limbah konstruksi untuk meminimalkan jumlah puing yang dihasilkan oleh industri konstruksi. Manufaktur AAC adalah salah satu perusahaan terkemuka dalam produksi produk baru ini. Untuk memastikan produksi yang stabil dan efisien dengan kegagalan minimal, diperlukan manajemen risiko yang efektif. House of Risk (HOR), metode yang diadaptasi dari Failure Mode and Effect Analysis (FMEA) dan House of Quality (HOQ), adalah metode manajemen risiko yang berfokus pada identifikasi tindakan pencegahan. Penilaian risiko dilakukan dengan mengidentifikasi risiko yang terjadi dalam proses bisnis melalui pendekatan eksternal menggunakan analisis PESTLE dan pendekatan internal menggunakan Supply Chain Operational Reference (SCOR). Selanjutnya, dilakukan penilaian terhadap nilai keparahan dan tingkat kejadian. Hasil dari House of Risk 1 menunjukkan 28 kejadian risiko dengan 27 agen risiko. Dengan mengikuti aturan Pareto, diperoleh 10 agen risiko yang diprioritaskan. House of Risk 2 mengidentifikasi 14 strategi mitigasi risiko yang diusulkan untuk mengurangi agen risiko tersebut. Melalui perhitungan, ditemukan bahwa 3 tindakan mitigasi memiliki nilai efektivitas tertinggi. Ketiga strategi mitigasi risiko ini disarankan untuk memastikan efektivitas proses bisnis yang dicapai.

Autoclaved Aerated Concrete, an environmentally friendly brick that act as an alternative raw material for buildings. It is built by reusing construction waste to minimize the increasing number of debris generated by the construction industry. AAC Manufacturer is one of the leading enterprise in the production of the emerging product. To ensure the stable and efficient production with minimum failures, a risk management is needed. House of Risk (HOR), a method adopted from the Failure Mode and Effect Analysis (FMEA) and House of Quality (HOQ) is a method of risk management focusing on identifying preventive actions. The risk assessment is conducted by identifying the risks occurring in the business process through external approach using PESTLE analysis and internal approach using Supply Chain Operational Reference (SCOR) approach. Then, an assessment of assessing the severity value and occurrences rate is carried out. The results of House of Risk 1 shows 28 risk events with 27 risk agents. By following the Pareto rule, 10 prioritized risk agents are obtained. The House of Risk 2 identified 14 proposed risk mitigation strategies to mitigate the risk agents. Through the calculation, it was found that 3 mitigation actions holds the highest value of effectiveness. These 3 risk mitigation strategies is suggested to ensure the achieved business process effectiveness."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darren Matthew
"Fenomena banjir hampir setiap tahun terjadi di Indonesia. Banjir menyebabkan masalah ekonomi, masalah sosial, masalah kesehatan, hingga sudah memakan korban jiwa. Salah satu faktor utama yang menyebabkan banjir adalah sebagian besar permukaan jalan dilapisi material yang bersifat kedap air sehingga air hujan tidak dapat terinfiltrasi ke dalam tanah dan menyebabkan limpasan air hujan, yang kemudian terakumulasi dan terjadi banjir. Penelitian ini bertujuan untuk mempelajari porous concrete paving block sebagai salah satu upaya untuk mencegah terjadinya banjir. Digunakkan batu screening dengan ukuran 4-9.5 mm sebagai komponen utama pembuatan porous concrete paving block. Dibuat paving block dengan variasi tinggi 6 cm, 8 cm, dan 10 cm. Rangkaian pengujian dilakukan untuk melihat karakteristik dari porous concrete paving block. Pengujian yang dilakukan berupa uji kuat tekan, porositas, dan laju infiltrasi. Berdasarkan pengujian yang telah dilakukan, porous concrete paving block memiliki porositas berkisar antara 19 – 23% dan laju infiltrasi berkisar antara 0.17 – 0.42 cm/detik, namun porous concrete paving block mengalami penurunan kuat tekan sebesar 58-60% jika dibandingkan dengan paving block konvensional. Hal ini menunjukkan bahwa porous concrete paving block hanya dapat digunakkan sebagai area pejalan kaki dan taman.

Floods occur almost every year in Indonesia. Floods cause economic, social, and health problems, and have even claimed lives. One of the main factors that cause flooding is that most of the road surfaces are coated with impervious pavement materials so that rainwater could not infiltrate into the soil and cause rainwater runoff, which accumulates and cause flooding. This research aims to study porous concrete paving block as an effort to prevent flooding. Screening stone with a size of 4-9.5 mm were used as the main component in manufacturing porous concrete paving block. Paving blocks were made with height variation of 6 cm, 8 cm, and 10 cm. A series of test were conducted to see the characteristics of porous concrete paving block. Compressive strength, porosity, and infiltration rate test are forms of testing that are carried out. The results show that porous concrete paving blocks have porosity between 19-23% and infiltration rate ranging from 0.17-0.42 cm/s. However, the compressive strength decreased by 58-60% when compared to conventional paving blocks. This indicates that porous concrete paving blocks can only be used as pedestrian and garden areas."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1999
S35933
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Dini Sofyani
"Seiring dengan bertambahnya kebutuhan perumahan di Indonesia, bertambah pula kebutuhan beton sebagai material yang paling diminati untuk pembuatan rumah tinggal. Cangkang Kelapa Sawit Oil Palm Shell / OPS dapat menjadi pilihan sebagai pengganti agregat kasar untuk campuran beton. Penggunaan OPS tidak hanya dapat memenuhi kebutuhan beton di Indonesia namun juga untuk mengurangi masalah pengolahan limbah OPS. Beton dengan campurang OPS sebagai agregat kasar sudah pernah diteliti sebelumnya dengan menghasilkan kuat tekan beton sebesar 20-23 MPa. Untuk itu kebutuhan untuk melanjutkan penelitian dalam skala yang lebih besar.
Penelitian ini menghasilkan respon mekanik dari balok beton ringan dengan OPS dengan menggunakan metode 2 point pembebanan. Pada penelitian ini akan diuji dua buah sampel balok dengan ukuran 15x25x300 cm. ukuran ini dianggap mewakili dimensi umum yang dipakai untuk rumah sederhana di Indonesia. Respon mekanik terhadap lentur murni akan disajikan sebagai hasil dari pengujian ini. Penelitian ini akan lebih difokuskan pada are dimana diprediksi akan terjadi lentur murni. Selainn itu juga dkan dilihat tentang bukaan retak yang terjadi.

Along with the increasing demand for habitation in Indonesia, the need for concrete as the most favourable housing material is escalating. Oil Palm Shell OPS as coarse aggregate material can be one of the alternatives materials in concrete mix proportions. This possible choice of material not only can fulfil the materials needs, but also capable of reducing the problem of OPS waste in Indonesia. As OPS concrete compressive strength in the previous studies in laboratory is in the range of 20 23 MPa, studies on larger element of structure becomes interesting.
This research presents flexure behaviour of lightweight concrete beams using OPS replacing natural coarse aggregates under four point loading application. In this study, a campaign of tests was conducted on three samples of identical beam with 15 25 300 cm3 of size. This size is representing typical dimension of beam used on two storey houses in Indonesia. Mechanical response due to bending that occurs in OPS lightweight concrete beam is presented. Observation on the beam is emphasized on the pure bending area. The evolution of the maximum crack opening will also be observed.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50897
UI - Tesis Membership  Universitas Indonesia Library
cover
Andhika Rizki Yuandry
"ABSTRACT
Beton ringan merupakan beton yang menggunakan campuran agregat kasar ringan dan pasir, sesuai spesifikasi SNI 03-2461-2002, memiliki berat isi antara 1680-1840 kg/m3, kuat tarik belah antara 2-2.3 MPa, dan kuat tekan antara 17-28 MPa. Agregat kasar ringan polipropilen yang dilapisi pasir dipakai dalam penelitian ini. Penelitian ini bertujuan untuk mendapatkan rancang campur yang menghasilkan beton ringan struktural sesuai spesifikasi diatas, dan mendapatkan hubungan tegangan tarik vs regangan tarik secara empiris melalui pengujian tarik langsung serta melalui simulasi numerik memakai ANSYS Student terhadap suatu uji pull-out, untuk mengetahui pengaruh tulangan pengekang pada beton ringan terhadap perilaku kuat lekat tulangan baja. Simulasi numerik uji pull-out tanpa tulangan pengekang dibuat sebagai perbandingan. Pada simulasi numerik hasil formulasi empiris tegangan-regangan tarik akan digunakan bersama-sama properti beton ringan lainnya yang didapat dari penelitian orang lain. Hasil dari penelitian ini dari secara berturut rancang campur 1: berat isi 1660.38 kg/m3, kuat tarik belah 1.9 MPa, kuat tekan 19.44 MPa, rancang campur 2: berat isi 1717.89 kg/m3, kuat tarik belah 2.3 MPa, kuat tekan 23.16 MPa, dan rancang campur 3: berat isi 1763.43 kg/m3, kuat tarik belah 2.26 MPa, kuat tekan 25.72 MPa. Ketiganya sudah memenuhi persyaratan beton struktural dalam SNI 03-2461-2002. Secara empiris didapat kuat tarik langsung beton berbanding lurus dengan akar kuadrat kuat tekan beton. Sedangkan, tegangan lekat hasil simulasi numerik pull-out dengan tulangan kekang memiliki nilai yang mirip jika dibandingkan dengan tegangan lekat pull-out tanpa tulangan kekang hasil eksperimen dan hasil simulasi numerik studi ini.

ABSTRACT
As specified in SNI 03 2461 2002, lightweight concrete is a concrete using a mixture of lightweight coarse aggregate and sand, where it has bulk density between 1680 1840 kg m3, tensile splitting strength between 2 2.3 MPa, and compressive strength between 17 28 MPa. In this study, sand coated polypropylene is used as coarse aggregates. The purpose of this study is to obtain mix design that produce structural lightweight concrete as specified above, and to obtain empirical relation between tensile stress and tensile strain via direct tensile test. Beside those two studies, another study to understand the influence of confining reinforcement on lightweight concrete in reinforcing bar rsquo s bond strength behavior is numerically simulated using ANSYS Student for pull out cases. Numerical analysis pull out test without confining reinforcement is made for comparison. In numerical analysis, empirical formula of tensile stress strain will be used together with other lightweight concrete properties obtained from other researches. The results of bulk density, tensile splitting strength, and compressive strength from this study can be presented sequentally where, mix design 1 properties 1660.38 kg m3, 1.9 MPa, 19.44 MPa, mix design 2 1717.89 kg m3, 2.3 MPa, 23.16 MPa, and mix design 3 1763.43 kg m3, 2.26 MPa, 25.72 MPa. All three of them have met the requirements of structural concrete in SNI 03 2461 2002. Empirically obtained, direct tensile strength of the concrete is directly proportional to square root of concrete compressive strength. Whereas, bond strength of pull out numerical analysis with confining reinforcement has similar value if compared to experimental results and numerical analysis of bond strength on pull out test without confining reinforcement."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Afsari
"ABSTRAK
Polypropylene merupakan jenis plastik polimer yang banyak digunakan sebagai kemasan produk. Banyaknya limbah berbahan dasar polypropylene ini sulit terurai, menjadi salah satu alasan untuk menggunakannya sebagai pengganti agregat kasar pada beton. Untuk mencapi mutu beton yang struktural, diperlukan komposisi material penyusun beton yang tepat. Dalam penelitian ini volume perbandingan agregat kasar polypropylene terhadap volume semen yang digunakan adalah 2,6; 2; dan 1,8 dimana hasil kuat tekan kubus yang diperoleh adalah 243,762 kg/cm2; 268,744 kg/cm2; dan 285,623 kg/cm2, dengan nilai modulus elastisitas 7584,048 MPa; 2520,158 MPa; 3913,633 MPa dan poisson rsquo;s ratio sebesar 0,178; 0,164; 0,219. Selain itu, nilai kuat lentur yang dihasilkan sebesar 2,94 MPa; 2,43 MPa; dan 3,41 MPa. Beton ringan ini termasuk kedalam klasifikasi beton ringan mutu sedang berdasarkan ACI 213R-87.

ABSTRACT
Polypropylene is kind of polymer that is used as product warp. That many un degraded waste made by polypropylene is the main reason of using it as lightweight coarse aggregates concrete. To achive the structural concrete, required the right composition of concrete materials. In this reseacrh, ratio the volume of coarse aggregate to the volume of cement used are 2,6 2 and 1,8 where the resulting compressive cube strength are obtained 243,762 kg cm2 268,744 kg cm2 dan 285,623 kg cm2, with modulus of elasticity 7584,048 MPa 2520,158 MPa 3913,633 MPa and poisson rsquo s ratio are 0,178 0,164 0,219. Besides that, the resulting of flexural strength are obtained 2,94 MPa 2,43 MPa and 3,41 Mpa. This lightweight concrete is classified as moderate lightweight concrete based on ACI 213R 87."
2017
S68732
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moh. Azhar
"[ABSTRAK
Telah dilakukan penelitian pembuatan beton ringan atau lightweight
concrete (LWC) menggunakan batu apug (BA) dan abu sekam padi (ASP).
Sampel beton ringan yang dibuat mengandung BA dengan fraksi berbeda, adapun
material semen, pasir, dan abu sekam padi volumenya dijaga tetap. Terdapat dua
parameter utama yang menentukan sifat mekanik sampel LWC masing-masing
adalah densitas sampel dan rasio air/semen (w/c). Sifat mekanik yang paling
utama dari LWC adalah kekuatan tekan. Pada campuran dengan fraksi volume
batu apung terbesar (100%) menghasilkan densitas dan kekuatan tekan paling
rendah masing-masing sebesar (1389,6 kg/m3 dan 11,1 MPa). Diketahui bahwa
makin rendah fraksi batu apung dalam sampel beton makin tinggi nilai densitas
dan kekuatan tekannya, disebabkan oleh tingginya nilai fraksi pori baik pori
terbuka maupun pori tertutup dalam sampel beton. Observasi terhadap fotomikro
SEM batu apung menunjukkan bahwa terdapat sejumlah besar pori dengan bentuk
memanjang ke bagian dalam dari permukaan sampel beton. Pori hadir dengan
kerapatan jumlah pori relatif besar serta dengan ukuran yang bervariasi. Fakta ini
menjelaskan mengapa batu apung besifat ringan karena memiliki densitas massa
yang rendah. Pola difraksi sinar X sampel beton ringan memperlihatkan dominasi
fasa kristalin diidentifikasi sebagai fasa quartz (SiO2). Namun dapat dipastikan
sampel beton ringan terdiri dari fasa campuran antara fasa kristalin dan dengan
sedikit fasa amorph.
Fotomikro SEM beton ringan menunjukkan bahwa senyawa Kalsium Silikat
Hidrat (CSH) mulai tumbuh pada waktu awal proses hidrasi dan terus
berkembang sampai umur beton mencapai umur hidrasi 28 hari yang ditandai
dengan sifat fisik yang padat dan peningkatan kekuatan beton. Dapat dipastikan
bahwa senyawa CSH ini memiliki peranan penting terhadap pengaturan sifat
mekanik seperti kekuatan tekan. Penelitian ini menyimpulkan bahwa batu apung
dan abu sekam padi adalah material berbasis silika amorph yang memiliki densitas
lebih rendah terutama dibandingkan dengan material pembentuk beton lainnya.
Baik densitas dan kekuatan tekan sampel beton ringan ditentukan oleh rasio antara
batu apung dan abu sekam padi. Ditemukan rasio terkecil BA/ASP yaitu 8
menghasilkan nilai densitas dan kekuatan tekan optimal, masing-masing pada usia
beton 28 hari sebesar 1891 kg/m3 dan 23 MPa. Komposisi beton ringan yang
terbaik diperoleh dari hasil penelitian ini adalah komposisi campuran PCC (1,00) :
Pasir (1,00) : ASP (0,05) : BA (0,50) dengan nilai Slump 8 cm ditandai oleh nilai
rasio antara kuat tekan dan densitas tertinggi adalah 1285.;

ABSTRACT
Research studies on the manufacture of lightweight concrete (LWC) using
pumice and rice husk ash (RHA) materials have been done. LWC samples were
made of pumice materials with a different mass fraction, while the cement, sand,
and rice husk ash materials were keep fixed. It was found that there are two main
parameters that determine the mechanical properties of LWC which are density
and the water and cement ratio (w/c ratio). The main mechanical properties of
LWC sample is the power press. Samples with the largest volume fraction of
pumice (100%) resulted in lightest density (1389.6 kg/m3) and the smallest
strength of LWC (11.1 MPa). It was found that, the lower the mass fraction of
pumice in LWC samples, the higher the density values and compressive strength
were obtained. This was caused by the high mas fraction value of pores, which
were both open and closed pores. Scanning electron micorscopy (SEM) images
for the pumice showed that the there are a large number of regular and structured
pores extending deep inside the surface of the sample. It was observed that pores
present with pore size does not vary significantly but with the density of the
relatively large number of pores, indicating pumice has a low mass density. The
XRD pattern of the lightweight concrete samples indicated that the samples were
dominated by crystalline phases in which the quartz (SiO2) is the main phase and
a small fraction of amorphous phase was also obtained.
SEM images of lightweight concrete samples showed that the structure of
Calcium Silicate Hydrates (CSH) started growing at the beginning of hydration
time and continue to evolve into a more solid structure until the age of 28 days,
where the compound has an important role to the mechanical properties such as
compressive strength. The study concluded that the pumice and rice husk ash is
are amorphous silica-based material which has a lower density compared to other
concrete forming material such as cement and sands. Both density and light
weight concrete compressive strength are determined by the ratio between pumice
and rice husk ash, in which the smallest ratio 8 resulted in the largest density and
compressive strength, which are 1890.5 kg/m3 and 23.2 MPa respectively at the
age of 28 days. The study concluded that the best composition for lightweight
concrete samples was the following: PCC (1,00): Sand (1,00): ASP (0,05): BA
(0,50) with a slump value of 8 cm resulted in the largest value of a ratio between
compressive strength and density of 1285.;Research studies on the manufacture of lightweight concrete (LWC) using
pumice and rice husk ash (RHA) materials have been done. LWC samples were
made of pumice materials with a different mass fraction, while the cement, sand,
and rice husk ash materials were keep fixed. It was found that there are two main
parameters that determine the mechanical properties of LWC which are density
and the water and cement ratio (w/c ratio). The main mechanical properties of
LWC sample is the power press. Samples with the largest volume fraction of
pumice (100%) resulted in lightest density (1389.6 kg/m3) and the smallest
strength of LWC (11.1 MPa). It was found that, the lower the mass fraction of
pumice in LWC samples, the higher the density values and compressive strength
were obtained. This was caused by the high mas fraction value of pores, which
were both open and closed pores. Scanning electron micorscopy (SEM) images
for the pumice showed that the there are a large number of regular and structured
pores extending deep inside the surface of the sample. It was observed that pores
present with pore size does not vary significantly but with the density of the
relatively large number of pores, indicating pumice has a low mass density. The
XRD pattern of the lightweight concrete samples indicated that the samples were
dominated by crystalline phases in which the quartz (SiO2) is the main phase and
a small fraction of amorphous phase was also obtained.
SEM images of lightweight concrete samples showed that the structure of
Calcium Silicate Hydrates (CSH) started growing at the beginning of hydration
time and continue to evolve into a more solid structure until the age of 28 days,
where the compound has an important role to the mechanical properties such as
compressive strength. The study concluded that the pumice and rice husk ash is
are amorphous silica-based material which has a lower density compared to other
concrete forming material such as cement and sands. Both density and light
weight concrete compressive strength are determined by the ratio between pumice
and rice husk ash, in which the smallest ratio 8 resulted in the largest density and
compressive strength, which are 1890.5 kg/m3 and 23.2 MPa respectively at the
age of 28 days. The study concluded that the best composition for lightweight
concrete samples was the following: PCC (1,00): Sand (1,00): ASP (0,05): BA
(0,50) with a slump value of 8 cm resulted in the largest value of a ratio between
compressive strength and density of 1285., Research studies on the manufacture of lightweight concrete (LWC) using
pumice and rice husk ash (RHA) materials have been done. LWC samples were
made of pumice materials with a different mass fraction, while the cement, sand,
and rice husk ash materials were keep fixed. It was found that there are two main
parameters that determine the mechanical properties of LWC which are density
and the water and cement ratio (w/c ratio). The main mechanical properties of
LWC sample is the power press. Samples with the largest volume fraction of
pumice (100%) resulted in lightest density (1389.6 kg/m3) and the smallest
strength of LWC (11.1 MPa). It was found that, the lower the mass fraction of
pumice in LWC samples, the higher the density values and compressive strength
were obtained. This was caused by the high mas fraction value of pores, which
were both open and closed pores. Scanning electron micorscopy (SEM) images
for the pumice showed that the there are a large number of regular and structured
pores extending deep inside the surface of the sample. It was observed that pores
present with pore size does not vary significantly but with the density of the
relatively large number of pores, indicating pumice has a low mass density. The
XRD pattern of the lightweight concrete samples indicated that the samples were
dominated by crystalline phases in which the quartz (SiO2) is the main phase and
a small fraction of amorphous phase was also obtained.
SEM images of lightweight concrete samples showed that the structure of
Calcium Silicate Hydrates (CSH) started growing at the beginning of hydration
time and continue to evolve into a more solid structure until the age of 28 days,
where the compound has an important role to the mechanical properties such as
compressive strength. The study concluded that the pumice and rice husk ash is
are amorphous silica-based material which has a lower density compared to other
concrete forming material such as cement and sands. Both density and light
weight concrete compressive strength are determined by the ratio between pumice
and rice husk ash, in which the smallest ratio 8 resulted in the largest density and
compressive strength, which are 1890.5 kg/m3 and 23.2 MPa respectively at the
age of 28 days. The study concluded that the best composition for lightweight
concrete samples was the following: PCC (1,00): Sand (1,00): ASP (0,05): BA
(0,50) with a slump value of 8 cm resulted in the largest value of a ratio between
compressive strength and density of 1285.]"
2015
D2054
UI - Disertasi Membership  Universitas Indonesia Library
cover
"Non autoclaved aerated concrete (NAAC) had been developed by using aluminium paste as an
aerated agent. Aluminium powder as much as 1.5% and 2.25%mass was added into the mixture, before it
was cured in room temperature for 28 days. NAAC was succesfully produced with this method with the
density of I 020 and 1130 kg/m3 and the compressive strength of 2. 35 and 2. 74 MPa, respectively.
"
Jurnal Teknologi, 21 (2) Juni 2007 : 135-139, 2007
JUTE-21-2-Jun2007-135
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>