Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 145245 dokumen yang sesuai dengan query
cover
Herman
"ABSTRAK
Dalam skripsi ini akan dirancang suatu pengendali jaringan syaraf yang dapat bekerja secara on-line yang hanya membutuhkan waktu relatif singkat untuk belajar dari data sebelumnya dan Iangsung menerapkan keluarannya pada kapal laut. Karena sifatnya yang on-line, pengendali jaringan syaraf ini membutuhkan pengetahuan yang mendekati fungsi alih plant yang sebenarnya beserta pengetahuan kualitatif dari sistem yang dikendalikan.
Pengendali jaringan syaraf ini menggunakan arsitektur specialized learningt41 untuk pembelajarannya, sedangkan algoritma yang digunakan untuk proses pembelajarannya adalah back propagation algorithm dengan metoda gradient descent dan penambahan momentum term.t41
Pengendali jaringan syaraf yang dirancang akan diuji dan disimulasikan pada empat jenis lintasan kapal laut yakni lintasan lurus, lintasan zig-zag, lintasan sinusoida dan lintasan berthing yang biasanya digunakan untuk berlabuh. Untuk menambah realitas simulasi dan sekaligus menguji unjuk kerja dari pengendali jaringan syaraf, pada simulasi ditambahkan gangguan-gangguan yang berupa non-linieritas daun kemudi kapal, derau (noise) dan angin.

"
2000
S39720
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1998
S39384
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mulyahari Zen
"Skripsi ini bertujuan untuk mengoptimalkan korelasi antara Transformasi Paket Wavelet dan jaringan Syaraf Tiruan topologi propagasi-balik umpan-maju dengan menggunakan pendekatan tingkah laku manusia dalam memahami obyek yang diamati. Tingkah laku ini dapat bersifat obyektif maupun subyektif tergantung dari keadaan dan tujuan pengamatan tersebut. Parameter obyektif menggunakan seluruh ciri sebagai dasar dalam melakukan klasiflkasi, sedangkan parsmeter subjektif hanya memanfaatkan ciri-ciri yang sesuai untuk memenuhi klasifikasi.
Hasil pengujian yang dilakukan menunjukkan bahwa tingkat keakuratan berkisar antara 92,861% - 97,86% jika digunakan untuk mengklasifikasikan obyek bidang datar. Sedangkan untuk tekstur antara 94,37% - 98,444%. Kemampuan perangkat lunak untuk mengenal obyek yang mengalami gangguan, yaitu maksimum sebesar 96% pada obyek yang tertranslasi, 90% pada obyek terrotasi, dan 92% pada obyek yang mengalami noise. Selain dari pada itu, kecepatan pembelajaran menjadi sangat singkat dengan rata-rata iterasi maksimal sebanyak 9134,8 kali dan waktu rata-rata kurang dari 261,726 detik.
Pengujian keseluruhan memberikan kesimpulan bahwa penambahan informasi-informasi tertentu yang berkaitan dengan ciri-ciri obyek, akan membantu dalam menghasilkan pembelajaran yang optimal dan pendeteksian yang maksimal."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S39595
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iqbal Mahmudy
"Penelitian dan pengembangan teknologi semakin berkesinambungan seiring giatnya eksplorasi di bidang sumber daya kelautan. Teknologi hidroakustik berperan besar khususnya dalam meningkatkan produksi ikan laut. Selain itu juga dikembangkan metode penelitian lain, misalnya proses pengidentifikasi spesies dalam sekelompok kawanan ikan (schooling).
Analisis difokuskan dalam hal pengolahan citra dari schooling yang datanya diambil dari hasil survei akustik dan observasi yang dilakukan Badan Penelitian Kelautan dan Perikanan. Data yang berbentuk citra ini tak lain adalah representasi target strength (koefisen pantul) dari sekelompok ikan, yang berikutnya diolah melalui konsep image processing dengan metode Jaringan Syaraf Tiruan (JST) pada MATLAB. JST disini berfungsi sebagai sebuah metode yang akan mengklasifikasi spesies yang data inputnya diambil dari nilai rata-rata matriks masing-masing citra schooling. Hasil klasifikasi selanjutnya akan langsung diidentifikasi untuk memastikan bahwa tingkat keakuratan dari sampel data pasca klasifikasi benar-benar terlihat.
Diharapkan metode ini akan menjadi sebuah alternatif yang cukup baik dalam menjawab berbagai permasalahan berkaitan dengan penelitian dan pendeteksian bawah air (hidroakustik).

Development of fishery and marine resources hydoacoustic technology has significant role for fish production improvement. It also develops other research method such as species in schooling of fish identification process.
The analysis is focused on images processing of fish schooling where the data is taken from the result of acoustic survey and observation by Fisheries and Marine Research Group. Data, as images that represents the coefficient of target strength of fish schoolings, processed by using images processing concepts with neural network and programmed in MATLAB. Neural Network has a function as method which will classify the species from its input data is taken from matrix averages of each schooling images. Clasification results would be identified directly to ensure the accuration level of this experiment is really seen.
Hopeful, this method could be an alternative of some problems related to the research and underwater detection (hydroacoustic).
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40409
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1998
S39409
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Haikal
"ABSTRAK
Dalam geofisika dan reservoir engineering, metode neural network lazim digunakan
untuk melakukan prediksi hubungan antara data log dengan data seismik atau data log
lainnya, sehingga dengan data log yang tersedia dapat diperkirakan log lain yang tidak
tersedia datanya, bahkan dipergunakan juga untuk melakukan karakterisasi reservoir.
Namun metode ini juga memiliki sejumlah kekurangan dalam penerapannya guna
memprediksi hubungan antara satu jenis data dengan jenis data yang lain. Masalah umum
yang ditemui adalah metode ini sulit diterapkan pada data yang terbatas.
Para praktisi pasar modal menggunakan metode wavelet transform untuk meningkatkan
kemampuan jaringan pada neural network untuk mengenali deret data yang polanya
belum pernah ditemui dalam dataset pelatihan. Metode ini telah terbukti efektif dalam
prediksi pergerakan harga dan permintaan yang kerap mengalami perubahan trend
maupun pola pergerakannya. Kami menerapkan metode ini untuk meningkatkan nilai
validasi dari log hasil estimasi dengan data yang terbatas.
Studi ini menunjukkan hasil proses wavelet transform pada data log yang diklasifikasikan
dengan jaringan kompetitif akan menjadi bagian yang dapat memberikan arti penting
untuk meningkatkan kemampuan generalisasi jaringan backpropagation.

ABSTRACT
In geophysics and reservoir engineering, the neural network method commonly used to
predict the relationship between log data and seismic data or another log data, thus with
the available log data, we can expect any logs which have no data, even also can be used
to perform reservoir characterization. However this method has some lacks in its
application to predict the relationship between one data with the other data types. The
common problem encountered is the reduction of network ability for data prediction if its
applied on limited input data.
Practitioners of capital market use wavelet transform methods to increases the network
ability in neural network to recognized data series, which never found in training dataset.
This method has been effectively proven to predict price and demand movement, which
usually changes both in trend or movement pattern. We applied this method to increase
the validation value of the estimated log on limited input data.
This study shows that the classified result of wavelet transform using competitive
network will be an important part to enhance generalization of backpropagation network."
2012
T31120
UI - Tesis Open  Universitas Indonesia Library
cover
Chelvian Aroef
"ABSTRAK
Pada era modern ini, semakin banyak jenis penyakit yang baru dengan gejala yang berbeda beda juga. Teknologi dituntut bisa memainkan peran untuk membantu penelitian pada bidang kesehatan. Stroke merupakan salah satu penyakit yang memiliki angka kematian tertinggi di dunia. Stroke terjadi karena terganggunya pasokan darah menuju otak sehingga otak mengalami kekurangan oksigen dan nutrisi. Stroke bisa dibagi menjadi berdasarkan bagaimana stroke terjadi, stroke hemoragik dan stroke iskemik. Stroke hemoragik terjadi karena pecahnya pembuluh darah yang menuju otak, sedangkan stroke iskemik terjadi karena terjadinya penyumbatan yang mengganggu pasokan darah ke otak. Jika penyumbatan terjadi pada daerah otak, maka disebut infark serebri. Dalam studi ini digunakan metode Convolutional Neural Network untuk mengklasifikasikan data gambar infark serebri yang nantinya akan dibandingkan dengan metode Neural Network. Didapatkan dari hasil performa metode Convolutional Neural Network lebih baik jika dibandingkan dengan metode Neural Network untuk pengklasifikasian data gambar infark serebri."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"At the time the use of non destructive test for pavement has been a trend because of its effectiveness and mobility. Falling weight deflectometer (FWD) is famous equipment for this aim...."
JJJ 26 (1-2) 2009
Artikel Jurnal  Universitas Indonesia Library
cover
"Probabilistic Neural Network (PNN) adalah salah satu tipe jaringan neural yang umum digunakan untuk memecahkan permasalahan klasifikasi pola. Disamping struktur jaringan dan metode pelatihan yang sederhana, PNN memiliki kelemahan utama yaitu dalam menentukan struktur jaringan yang terdiri dari penentuan nilai para meter smoothing dan jumalh neuron yang di gunakan pada lapisan pola . Dengan adanya kelemahan ini beberapa peneliti mengajukan algoritma Supervised PNN structure Determination (SPNN) dengan tujuan untuk mempermudah penentuan struktur PNN. Akan tetapi dalam implementasi iteratif yang telah di laporkan , SPNN masih memerlukan waktu komputasi yang cukup lama untuk menentukan struktur PNN yang baik. Makalah ini menjelaskan usaha perbaikan kinerja waktu proses implementasi SPNN dengan memperhatikan bagian-bagian proses yang independent serta memodifikasi algoritmanya untuk dapat diterapkan pemrosesan secara paralel. Hasil eksperimen menunjukkan percepatan yang cukup berarti."
Artikel Jurnal  Universitas Indonesia Library
cover
Danu Widatama
"Biometrik adalah proses identifikasi dan autentikasi berdasarkan atribut unik yang dimiliki oleh manusia. Salah satu atribut manusia yang dapat digunakan untuk biometrik adalah iris. Iris adalah bagian dari mata yang mengatur banyaknya cahaya yang masuk mengenai retina. Iris berbentuk lingkaran dan memiliki karakteristik yang unik pada setiap orang. Penelitian ini adalah tentang pengenalan iris untuk biometrik.
Dalam penelitian ini pembuatan vektor masukan untuk pengenalan dilakukan dengan cara yang berbeda dari biasanya yaitu dengan melingkar, sesuai bentuk iris. Untuk pengenalannya digunakan metode pattern matching dan jaringan syaraf tiruan. Dengan pembuatan vektor masukan secara melingkar, tingkat pengenalan yang dihasilkan cukup tinggi terutama jika metode pengenalan yang digunakan adalah dengan pattern matching.

Biometric is the process of identification and authentication based on many unique attributes of human. One of the usable human attributes for biometric is iris. Iris is a part of the human eye which controls the amount of light going to the retina. Iris is circular and each person has a different iris characteristics. This research is about iris recognition for biometrics.
In this research, the input vector for recognition is created with a different way from the usual. The input vector is created by following iris shape which is circular. The recognition process is done by using pattern matching and artificial neural network. The creation of input vector by circling yields a high recognition rate, especially when pattern matching is used for the recognition process.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>