Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 181689 dokumen yang sesuai dengan query
cover
Adrizal
"Pada skripsi ini dirancang pengendali Model Predictive Control (MFC) Nonlinier pada Coupled-Tank Control Apparatus PP-100. Model yang digunakan adalah Model Nonlinier Hammerstein. Penentuan sinyal kendali yang akan diberikan psida plant dilakukan dengan menggunakan Genetic Algorithm.
Model Nonlinier Hammerstein terdiri dari bagian nonlinier statis yang diikuti oleh bagian linier dinamis. Bagian nonlinier statis dari Model Hammerstein dibuat menggunakan struktur Jaringan Radial Basis Function (RBF). Jumlah node dan parameter pusat dan lebar dari Fungsi Gaussian yang digunakan dalam node ditentukan dengan menggunakan Genetic Algorithm (GA). Nilai kesesuaian pada GA ditentukan dengan menggunakan Akaike Information Criterion (AIC) yang berfungsi melihat kesesuaian suatu model terhadap sistem yang sesungguhnya. Parameter pada bagian linier dinamis dan parameter beban pada Jaringan RBF ditentukan dengan menggunakan metode Linear Least-Square.
Hasil uji eksperimen menunjukkan bahwa pengendali MPC Nonlinier mampu memberikan kinerja pengendalian yang baik pada titik kerja yang berbeda."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S40735
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melvin, Jesse
"Pada sistem kendali konvensional, batasan-batasan seperti amplitudo dan slew rate sinyal kendali tidak diperhitungkan pada proses pengendalian. Hal ini tentu dapat menyebabkan hasil kendali menjadi kurang baik, terutama jika terjadi pemotongan paksa terhadap sinyal kendali sebelum masuk ke plant. Untuk mengatasi hal tersebut dirancanglah suatu pengendali MPC. Dengan MPC, keluaran proses yang akan datang dapat diprediksi dan batasan-batasan yang ada tidak diabaikan sehingga keluaran sistem menjadi bagus. Selain keluaran sistem menjadi bagus, adanya batasan juga dapat membuat kinerja alat menjadi optimal.
Pada skripsi ini, sistem yang akan dikendalikan dengan metode MPC dengan constraints adalah Coupled-Tank Basic Process Rig 38-100. Model yang digunakan pada perancangan pengendali berbentuk ruang keadaan yang didapat dengan menggunakan metode Kuadrat Terkecil berdasarkan pada data masukan dan data variabel keadaan alat. Masukan sistem adalah tegangan pompa pada tangki pertama dan keluaran yang akan dikendalikan adalah ketinggian air pada tangki kedua.
Dari uji eksperimen terbukti bahwa metode pengendali MPC dengan constraints memberikan hasil yang lebih baik dibandingkan dengan metode Aturan Kendali Ruang Keadaan. Hal tersebut dapat terlihat dari tanggapan sistem, dimana tanggapan sistem dengan menggunakan metode MPC lebih cepat serta tidak adanya overshoot maupun undershoot pada keluaran sistem saat terjadi perubahan nilai trayektori acuan.

In conventional control system, constraints, such as amplitude and slew rate of input signal are not computed in control process. This matter of course can make the control result become worst, especially when force cutting occur to input signal before it enters to the plant. To solve those problems, a MPC controller is designed. With MPC, process output can be predicted and the existence of constraints will not be ignored and, as the result, it makes output system become well. Besides improve output system quality, the existence of the constraints can also make the device works at optimum condition everytime.
In this following final thesis, system that will be controlled by MPC with constraints method is Coupled-Tank Basic Process Rig 38-100. Model that is used in controller design has state space form. This model is formed by using Least Squares method based on input and state variable data. Input system is pump in first tank and output that will be controlled is water level in second tank.
Experiments prove that MPC with constriants give better result than State Controller method. With MPC, system response become faster and there are no overshoot nor undershoot when the set point change.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40525
UI - Skripsi Open  Universitas Indonesia Library
cover
Shimon Kana Budhyatmo
"Perancangan pengendali untuk sistem nonlinear merupakan suatu persoalan yang cukup rumit. Untuk merealisasikan hal tersebut, dibutuhkan model yang memiliki karakteristik sama seperti proses, yang pada umumnya bersifat nonlinear. Dengan adanya model tersebut, dapat dirancang suatu skema pengendalian Internal Model Control (IMC) yang dapat mengendalikan proses yang bersifat nonlinear. Pada skripsi ini, sebuah model Hammerstein yang terdiri dari blok nonlinear Neural Network dan blok linear dengan struktur ARX dirancang untuk meniru karakteristik proses nonlinear yang dimiliki oleh sistem tiga tangki terhubung. Model tersebut diperoleh dengan mengidentifikasi proses melalui pasangan data masukan keluaran sistem lingkar terbuka. Dengan metode yang sama, invers model tersebut juga dirancang untuk menyusun sebuah skema pengendalian IMC. Selain itu, dirancang juga sebuah blok tambahan Radial Basis Function Network (RBFN) untuk meningkatkan performa dari sistem. Kinerja pengendali yang dihasilkan kemudian dibandingkan dengan skema pengendalian PID dan di uji kemampuannya dalam mengatasi terjadinya gangguan berupa kebocoran pada sistem.

The design of a controller for nonlinear systems is a one complex problem. In order to realize that, it is necessary to obtain a model with the same characteristics with the process, which is in general nonlinear. Using that model, a control scheme of Internal Model Control (IMC) can be designed, which is able to control nonlinear processes. In this final project, a Hammerstein model which is consist of a nonlinear block of neural network and a linear block of ARX structure is designed to have the same characteristic with nonlinear process of a three coupled tank system. The model is obtained by identifying the process using the input-output data pair of the open loop system. Using the same method, an inverse of the model also design in order to create IMC control scheme. That aside, an additional block of a Radial Basis Function Network (RBFN) also designed to improve the performance of the system. Moreover, the performance of the controller is compared with PID control scheme and its ability to overcome disturbance, system leak, is also tested."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51465
UI - Skripsi Open  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sangat kecil dan mendekati 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in coupled tank systems in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be made using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is very small and close to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sama dengan 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in the coupled tank system in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be created using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is equal to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kartika Sekarsari
"Pada tesis ini dibahas tentang simulasi dan perancangan pengendalian sistem multivariabel Coupled Tank Apparatus dengan menggunakan Neural Network model Direct Invers Control. Model sistem yang bersifat non linier akan dilinierisasi sehingga diperoleh fungsi alih yang mengandung persamaan karakteristik yang menyerupai sistem linier orde dua yang berada dalam keadaan over damped akan selalu stabil. Pengurangan interaksi (kopling) yang terjadi pada sistem multivariabel Coupled Tank Apparatus dilakukan dengan perancangan dekopling yang menggunakan metode Relative Gain Matrik. Perancangan dan simulasi sistem pengendalian Neural Network model Direct Invers Control menggunakan program Matlab Versi 5.3.1. Perbandingan antara analisa tanggapan waktu terhadap sistem kendali yang dirancang dengan sistem kendali Proportional Integral Derivatif serta sistem kendali logika Fuzzy menghasilkan tanggapan respon untuk mencapai keadaan steady state (setting time) pada Neural Network model Direct Invers Control lebih cepat dibandingkan dengan tanggapan waktu yang dihasilkan oleh pengendali konvensional PI, PID, dan Fuzzy.
Dalam hal ini, data parameter sistem untuk simulasi diperoleh dari hasil penelitian dan percobaan di Laboratorium Fakultas Teknik Universitas Indonesia.

In this thesis, a study on simulation and design of a multivariabel Control of Coupled Tank Apparatus Systems is presented. A Neural Network Controller based on a Direct Invers Control is applied. The linierized model of the Coupled Tank Apparatus Systems appears to be a stable second order transfer function with an over damped characteristic. A Decoupling Compensator is designed using Relative Gain Matrix Method of Bristol. The Simulation and control is implemented using Matlab 5.3.1 on apersonal computer. For comparison a PID controller and a Fuzzy Logic Controller are also implemented. It is found that NN Direct Invers Control shows a better performance than the other control method in terms of speed response.
All data for experiment and equipment used are done in the Control Laboratory, Dept of Electrical Engineering, Faculty of Technology University of Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2002
T8480
UI - Tesis Membership  Universitas Indonesia Library
cover
Antonius Yuda Kristiawan
"ABSTRAK
Pada sistem kendali konvensional, batasan-batasan seperti amplitudo dan slew
rate sinyal kendali tidak diperhitungkan pada proses pengendalian. Hal ini tentu
dapat menyebabkan hasil kendali menjadi kurang baik, terutama jika terjadi
pemotongan paksa terhadap sinyal kendali sebelum masuk ke plant. Untuk
mengatasi hal tersebut dirancanglah suatu pengendali MPC. Dengan MPC,
keluaran proses yang akan datang dapat diprediksi dan batasan-batasan yang ada
tidak diabaikan sehingga keluaran sistem menjadi bagus. Selain keluaran sistem
menjadi bagus, adanya batasan juga dapat membuat kinerja alat menjadi optimal.
Pada skripsi ini, sistem yang akan dikendalikan dengan metode MPC dengan
constraints adalah Coupled-Tank Control Apparatus PP-100. Model yang
digunakan pada perancangan pengendali berbentuk ruang keadaan yang didapat
dengan menggunakan metode Kuadrat Terkecil berdasarkan pada data masukan
dan data variabel keadaan alat. Masukan sistem adalah tegangan pompa pada
tangki pertama dan keluaran yang akan dikendalikan adalah ketinggian air pada
tangki kedua.
Dari uji eksperimen terbukti bahwa metode pengendali MPC dengan constraints
memberikan hasil yang lebih baik dibandingkan dengan metode Aturan Kendali
Kenaikan. Hal tersebut dapat terlihat dari tanggapan sistem, dimana tanggapan
sistem dengan menggunakan metode MPC lebih cepat serta tidak adanya
overshoot maupun undershoot pada keluaran sistem saat terjadi perubahan nilai
trayektori acuan.

ABSTRACT
In conventional control system, constraints, such as amplitude and slew rate of
input signal are not computed in control process. This matter of course can make
the control result become worst, especially when force cutting occur to input
signal before it enters to the plant. To solve those problems, a MPC controller is
designed. With MPC, process output can be predicted and the existence of
constraints will not be ignored and, as the result, it makes output system become
well. Besides improve output system quality, the existence of the constraints can
also make the device works at optimum condition everytime.
In this following final thesis, system that will be controlled with MPC with
constraints method is Coupled-Tank Control Apparatus PP-100. Model that is
used in controller design has state space form. This model is got by use Least
Squares method based on input and state variable data. Input system is pump in
first tank and output that will be controlled is water level in second tank.
Experiments prove that MPC with constriants give better result than Incremental
Control method. With MPC, system response become faster and there are no
overshoot nor undershoot when the set point change."
2007
S40377
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rayhan Ghifari Andika
"Pengendalian proses di industri desalinasi sangat penting untuk mengoptimalkan operasi dan mengurangi biaya produksi. Pengendali proporsional, integral, dan derivatif (PID) umum digunakan, namun tidak selalu efektif untuk sistem coupled-tank yang kompleks dan nonlinier. Penelitian ini mengeksplorasi penggunaan algoritma reinforcement learning (RL) dengan algoritma Deep Deterministic Policy Gradient (DDPG) untuk mengendalikan ketinggian air pada sistem coupled-tank. Tujuan penelitian ini adalah merancang sistem pengendalian ketinggian air menggunakan RL berbasis programmable logic controller (PLC) untuk mencapai kinerja optimal. Sistem diuji pada model coupled-tank dengan dua tangki terhubung vertikal, di mana aliran air diatur untuk menjaga ketinggian air dalam rentang yang diinginkan. Hasil menunjukkan bahwa pengendalian menggunakan RL berhasil dengan tingkat error steady-state (SSE) antara 4,63% hingga 9,6%. Kinerja RL lebih baik dibandingkan PID, dengan rise time dan settling time yang lebih singkat. Penelitian ini menyimpulkan bahwa RL adalah alternatif yang lebih adaptif untuk pengendalian level cairan di industri dibandingkan dengan metode konvensional.

Process control in the desalination industry is crucial for optimizing operations and reducing production costs. Proportional, integral, and derivative (PID) controllers are commonly used but are not always effective for complex and nonlinear coupled-tank systems. This study explores the use of reinforcement learning (RL) with the Deep Deterministic Policy Gradient (DDPG) algorithm to control the water level in a coupled-tank system. The objective of this research is to design a water level control system using RL based on a programmable logic controller (PLC) to achieve optimal performance. The system was tested on a coupled-tank model with two vertically connected tanks, where the water flow is regulated to maintain the water level within the desired range. Results show that control using RL achieved a steady-state error (SSE) between 4.63% and 9.6%. RL performance was superior to PID, with faster rise and settling times. This study concludes that RL is a more adaptive alternative for liquid level control in industrial settings compared to conventional methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Fadilah Yuliandini
"Sistem Coupled tank umum digunakan pada bidang industri otomatis, salah satu pengendalian yang umum terjadi pada coupled tank adalah pengendalian ketinggian air. Sistem pengendalian tersebut bertujuan untuk menjaga ketinggian air yang berada pada tangki. Penelitian ini melakukan simulasi pengendalian ketinggian air pada coupled tank dengan menerapkan Reinforcement Learning (RL) dengan algoritma Deep Deterministic Policy Gradient (DDPG). Proses simulasi tersebut dilakukan menggunakan simulink pada MATLAB. Algoritma DDPG melalui serangkaian training sebelum diimplementasikan pada sistem coupled tank. Kemudian pengujian algoritma DDPG dilakukan dengan memvariasikan nilai set point dari ketinggian air dan sistem diberikan gangguan berupa bertambahnya flow in dari control valve lain. Performa dari algorima DDPG dalam sistem pengendalian dilihat dari beberapa parameter seperti overshoot, rise time, settling time, dan steady state error. Hasil yang diperoleh pada penelitian ini bahwa algoritma DDPG memperoleh nilai settling time terbesar sebesar 109 detik, nilai steady state error terbesar sebesar 0.067%. Algoritma DDPG juga mampu mengatasi gangguan dengan waktu terbesar sebesar 97 detik untuk membuat sistem kembali stabil.

The Coupled Tank system is commonly used in the field of industrial automation, and one of the common controls implemented in this system is water level control. The purpose of this study is to simulate water level control in a coupled tank using Reinforcement Learning (RL) with the Deep Deterministic Policy Gradient (DDPG) algorithm. The simulation process is performed using Simulink in MATLAB. The DDPG algorithm undergoes a series of training sessions before being implemented in the coupled tank system. Subsequently, the DDPG algorithm is tested by varying the set point values of the water level and introducing disturbances in the form of increased flow from another control valve. The performance of the DDPG algorithm in the control system is evaluated based on parameters such as overshoot, rise time, settling time, and steady-state error. The results obtained in this study show that the DDPG algorithm achieves a maximum settling time of 109 seconds and a maximum steady-state error of 0.067%. The DDPG algorithm is also capable of overcoming disturbances, with the longest recovery time of 97 seconds to restore system stability."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lumban Gaol, Abdon Jonas
"Pengendalian level fluida di dalam tabung dan pengendalian aliran fluida antar beberapa tabung merupakan permasalahan dasar dalam industri proses. Masukan aliran fluida ke dalam tabung dan antar tabung haruslah dijaga pada kondisi tertentu sehingga keluaran sistem bisa sesuai dengan yang diinginkan. Berbagai macam pengendali dirancang untuk mengendalikan level fluida ini dengan baik, sehingga error yang dihasilkan pun semakin bisa diminimalisir. Pengendali PID dan MPC merupakan contoh pengendali yang bisa digunakan dalam mengontrol level fluida tersebut.
Di dalam seminar tesis ini akan dirancang pengendali PID (Proportional-Integral-Derivative) dan Model Predictive Control (MPC) untuk mengendalikan level fluida di dua tangki terhubung. Sebelum pengendali PID dan MPC ini dirancang, model non-linier terlebih dahulu dibentuk bedasarkan sistem dua masukan aliran fluida dan dua keluaran sistem berupa ketinggian level fluida pada kedua tabung. Model non-linier sistem multivariabel (Two Input Two Output - TITO) ini kemudian dilinierisasi pada titik kerja yang dipilih untuk memperoleh nilai ruang keadaan A, B, C dan D yang kemudian digunakan untuk membentuk fungsi alih sistem. Selain proses linierisasi, identifikasi dengan metode Kuadrat Terkecil juga dilakukan untuk menghasilkan model linier sistem yang baru sebagai pendekatan dalam mengontrol model non-linier sistem dengan MPC.
Dalam sistem multivariabel coupled-tanks ini masih terdapat interaksi yang kuat antar variabel masukan-keluaran, sehingga fungsi alih dekopler pun dirancang untuk mengurangi atau menghilangkan efek kopling antar variabel masukan-keluaran ini. Pengendali PID dan MPC yang dirancang akan digunakan dalam simulasi untuk mengendalikan model linier/fungsi alih (dengan dekopler) dan model non-linier sistem.
Hasil simulasi pengendali PID dan MPC untuk model linier menunjukkan respon sistem yang baik, dimana waktu settling-nya cenderung relatif kecil. Juga hasil simulasi pengendali PID dan MPC untuk model non-linier, meskipun menunjukkan respon sistem yang cenderung lambat, masih bisa dikatan relatif baik. Setelah membandingkan hasil simulasi sistem dengan pengendali PID dan MPC yang dirancang, maka MPC merupakan pengendali yang lebih baik digunakan untuk mengendalikan sistem multivariabel coupled-tanks ini.

The control of liquid level in tanks and flow between tanks is a basic problem in the process industries. The amount of liquid flowed into tanks and the flow of liquid between tanks has to be maintained at certain conditions in order to meet the desired performances. Many controllers have been designed to control the liquid level in tanks with the intention of reducing errors during and or after control process. PID controller and MPC are two of many controllers that could be designed to control the liquid level in tanks.
In this Master's thesis, PID (Proportional-Integral-Derivative) controller and Model Predictive Control (MPC) are designed to control the liquid levels in two coupled tanks. Before designing PID controller and MPC, the complete nonlinear dynamic model of the plant needed to be introduced for a case involving two input flows of liquid and two output variables, which are the level of the liquid in two tanks.
This multivariable (Two Input Two Output - TITO) nonlinear model would be then linearised based on selected operating point in order to obtain the value of state-space variables A, B, C and D. These values are converted to transfer function form. Besides that, system identification with Least Square method is also used to yield a new state-space model as an approach model to control the nonlinear model with MPC. Due to the high interactions between input-output variables, decoupler needed to be designed with the aim of reducing or eradicate these between input-output variables coupling effects. Afterwards, the designed PID controller and MPC will be used in simulation in controlling the linear model/transfer function (with decoupler) and the nonlinear model of the coupled-tanks multivariable system.
The result of simulation using PID controller and MPC in controlling the linear model of the system shows good performance in terms of rise time and settling time. In Addition, the result of simulation using nonlinear model, despite the slow system's response, shows satisfactory performance in terms of steady-state behavior, in which the output signals eventually meets the desired reference signals. After comparing the results of system simulation both with PID Controller and MPC, the writer may then infers that MPC is the better one to control this coupled-tanks multivariable system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T34991
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>