Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 71985 dokumen yang sesuai dengan query
cover
Muhammad Rizky Hartaman
"Sampai saat ini, serangan jantung masih menjadi penyebab utama kematian dibanyak tempat di dunia. Salah satunya adalah kelainan pada katup jantung yang dapat dideteksi melalui suara murmur pada detak jantung penderita. Skripsi ini membahas tentang perancangan sistem pengenalan penyakit jantung berdasarkan suara detak jantung dengan metode HMM. Sistem ini terbagi menjadi dua proses utama, yaitu pembentukan database dan pengenalan penyakit jantung. Kedua proses ini dilakukan dengan cara yang hampir sama, yaitu tiap sampel akan mengalami proses pelabelan, pembuatan codebook dan pembentukan parameter HMM. Hanya saja, pengolahan sinyal suara pada proses pengenalan mengacu database yang telah lebih dulu diproses. Dimulai dengan pembentukan vektorvektor data dengan teknik kuantisasi vektor (VQ), yang kemudian dicari suatu nilai centroid yang presisi untuk dijadikan state HMM dalam menentukan nilainilai parameter yang dibutuhkan.
Berdasarkan parameter-parameter inilah, dapat dihitung suatu nilai probabilitas (Log of Probability) maksimum yang akan menunjukkan hasil keluarannya. Dari hasil perancangan sistem ini, akan dibandingkan akurasi sistem terhadap variasi nilai durasi sampel, jumlah sampel, dan ukuran codebook. Pada penelitian ini ukuran codebook yang optimal adalah 64, jumlah database yang optimal sebesar 10 (sepuluh) buah, dan rentang waktu sampel yang optimal adalah 0,7 detik. Sementara akurasi sistem secara keseluruhan bervariasi antara 60% hingga 85%.

Heart attack is still being the number one killer until now all over the world. A part of heart diseases which can be detected by murmur sound and will be explained here is valve anomaly. This thesis is talking about heart disease recognition based on its heart sound system design using HMM method. The system consists of two main processes: database construction and diseases recognition. Both of this processes is done with almost exact ways. Each samples will be processed through labelling, codebook construction, and HMM parameter making. The difference is that in recognizing process, sound signal will be compared to database which has been made before. The whole process is started with data vectors production by vector quantization (VQ) which can be used to analyze precise centroid positions. The centroid will define HMM states and parameters.
A Log of Probability (LoP) will be calculated from the parameter values. The largest value of LoP will be declared as an output of the system. Output of each samples are compared to get system accuracy based on variation of sample duration, sample amount, and codebook size. The optimum codebook size in this research is 64, optimum sample amount in database is 10, and 0.7s sample duration. Overall, accuracy of the system is variating from 60% up to 85%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51389
UI - Skripsi Open  Universitas Indonesia Library
cover
Afita Putri Lestari
"Darah merupakan unsur dalam tubuh manusia yang memiliki peran penting dalam mekanisme kerja tubuh. Banyak informasi penting yang terkandung dalam darah, termasuk informasi penyakit yang diderita seseorang. Pentingnya informasi tersebut ditambah kebutuhan diagnosis dini untuk mempercepat penanganan suatu penyakit, maka citra darah sangat vital sebagai media dalam proses pengenalan penyakit. Dengan menggunakan citra darah, proses pengenalan penyakit menjadi lebih mudah dan cepat karena tidak diperlukan proses reaksi kimia dengan darah.
Dalam skripsi ini dilakukan perancangan proses pengenalan penyakit leukemia dari citra darah dengan menggunakan metode Hidden Markov Model (HMM). Prosesnya melibatkan dua tahap proses utama yaitu proses pembentukan database dan proses pengenalan. Pada tahap pembentukan database, citra darah diubah menjadi vector sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword. Kumpulan codeword akan disimpan berupa codebook di dalam database. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan titik sample dari setiap sample citra darah. Dengan menggunakan codebook berukuran 32, 64 dan 128 dengan jumlah repetisi 5 dan 10 kali, diperoleh tingkat akurasi pengenalan penyakit darah antara 60% sampai 82,76%.

Blood is a part of human body which plays an important role in the body mechanism. Important informations could be achieved from blood, including information of diseases. This kind of information is very essential in order to diagnose the disease as early as possible. Blood cells in digital format will be easier to analyze using computers and the process itself could be performed faster than conventional methods, since it needs no chemical reactions in the process.
In this research, the disease identification for leukemia is performed from blood imageries analyzed using Hidden Markov Model (HMM). The whole process consists of two main processes: database construction and recognition. In the first process, blood image will be transformed to vectors as sample points and the nearest points will be quantized as centroids or codewords. The collection of codewords is built in codebook database. Recognition process is performed by taking the largest value of HMM?s log of probability from sample points of several blood images. Based on the simulation results, using codebook 32, 64 and 128 with repetition 5 and 10 times, the accuration levels of the recognition results are between 60% and 82.76%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40544
UI - Skripsi Open  Universitas Indonesia Library
cover
Maria Yulianti S.
"Tugas akhir ini dibuat untuk merancang perangkat lunak yang dapat mengidentifikasi retina manusia melalui proses image processing dengan menggunakan Hidden Markov Model. Dalam pembuatan perangkat lunak indetifikasi ini terdiri atas dua bagian, yakni pembentukan database dan proses identifikasi itu sendiri. Pembentukan database akan menghasilkan codebook dan nilai probabilitas HMM. Identifikasi dilakukan dengan mengambil hasil scanning retina dari rumah sakit. Kemudian dilakukan proses normalisasi dan ekstraksi terhadap gambar retina yang didapat untuk memindai pola pembuluh darah kapiler pada retina.
Proses pengenalan retina dalam tugas akhir ini menggunakan Hidden Markov Model yang dilakukan melalui dua tahapan yaitu proses pelatihan data (training) yang dilakukan untuk melatih sistem pengenal yang bekerja agar dapat mengetahui setiap jenis pola pembuluh darah yang ada, serta proses pengenalan retina itu sendiri (recognition) yang digunakan untuk mengenali retina yang ingin diuji. Seluruh proses yang dilakukan dibuat menggunakan sebuah perangkat lunak untuk memecahkan masalah-masalah matematis. Dari hasil uji coba yang diperoleh, sistem ini dapat mengenali retina yang diuji dengan tingkat akurasi mencapai 100%.

This final project is created to design a software that can identify human retina through image processing using hidden markov model. This identification software consist of two part, that are database development and identification itself. The database development produce codebook and HMM probability value. Identification using retinal scanning from hospital. Then the images will be normalisated and extracted to separate retinal vessel.
The identification process of retinal in this final assignment is using Hidden Markov Model that will be executed in 2 steps. The first step is data training process whose objective is to train the recognition system so it can recognize each kind of retinal vessel, and the second one is the recognition process of all retinal image. All processes are done by using a mathematic problem solution software. From the obtained test results, this system has the ability to recognize the tested retinal image with 100% accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40590
UI - Skripsi Open  Universitas Indonesia Library
cover
Djoko Hartono
"Skripsi ini betujuan untuk merancang sebuah software pendeteksi korona yang terjadi pada peralatan listrik yang mengunakan tegangan tinggi. Metode identifikasi menggunakan Hidden Markov Model (HMM) yang memiliki kelebihan dalam memodelkan persamaan matematika. Software ini meliputi 2 proses utama, yaitu training sebagai proses pengisian database dan identifikasi. Input berupa data audio (*.wav) yang kemudian diolah melalui beberapa tahapan diantaranya labelisasi, pembentukan codebook dan pembentukan parameter HMM. Hal yang harus diperhatikan dalam pengolahan ini adalah waktu pencuplikan, jumlah iterasi dan ukuran codebook yang digunakan, dimana ketiga variabel ini akan dianalis sehingga dapat diketahui nilai masing - masing parameter yang menghasilkan identifikasi dengan akurasi paling tinggi. Akurasi tertinggi yang dapat dicapai software ini hanya sebesar 50% dikarenakan data latih korona yang terbatas.

This final project was made to design a corona detection that occured in the electric equipment using very hight voltage, such as electric guardhouse. Identification methode that used was Hidden Markov Model (HMM). It had an advantage in modeling mathematic equations. This software contains 2 main proces, training as filling in the database and identification. The input is audio data which format is (*.wav) then processed pass through many steps, such as : labelisation, forming the codebook and HMM parameters. Factor that influenced to the accuration as the result of the software is duration time, amount of iteration and codebook size. With testing the software, we will know which setting will result the highest accuration. The maximal accuration of the identification is only 50% because of limited training data."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51159
UI - Skripsi Open  Universitas Indonesia Library
cover
Ferry Sugiarto
"Skripsi ini bertujuan untuk membuat suatu pengenalan plat nomor mobil menggunakan Hidden Markov Model dengan proses ekstraksi fitur berupa segmentasi dan skeletonisasi. Hasil gambar plat nomor mobil didapat menggunakan kamera dijital. Kemudian dilakukan proses segmentasi terhadap gambar plat yang didapat untuk memisahkan karakter-karakter angka dan huruf yang ada dalam plat tersebut. Selanjutnya dilakukan proses skleletonisasi untuk mendapatkan bentuk kerangka dari setiap karakter yang ada.
Hasil skeletonisasi inilah yang akan dikenali oleh sistem pengenal. Proses pengenalan plat nomor mobil dalam skripsi ini menggunakan Hidden Markov Model yang dilakukan melalui dua tahapan yaitu proses pelatihan data (training) yang dilakukan untuk melatih sistem pengenal yang bekerja agar dapat mengetahui setiap jenis karakter angka dan huruf yang ada, serta proses pengenalan plat nomor mobil itu sendiri (recognition) yang digunakan untuk mengenali plat nomor yang ingin diuji. Seluruh proses yang dilakukan dibuat menggunakan sebuah perangkat lunak untuk memecahkan masalah-masalah matematis . Dari hasil uji coba yang diperoleh, sistem ini dapat mengenali plat nomor yang diuji dengan tingkat akurasi mencapai 90%.

A Software of car license plate recognition using hidden markov model is developed. The input image is extracted by using segmentation and skeletonization process. The images of car license plate are captured using a digital camera. Then the images will be segmented to separate the number and letter characters. After that, the segmented characters will be skeletonized to obtain the skeleton shape of each character. Then, these skeletonized shapes will be recognized by the recognition system.
The identification process of car license plate in this final assignment is using Hidden Markov Model that will be executed in 2 steps. The first step is data training process whose objective is to train the recognition system so it can recognize each kind of the existing number and letter characters, and the second one is the recognition process of the car license plate that will be used to recognize all the tested license plates. All processes are done by using a mathematic problem solution software. From the obtained test results, this system has the ability to recognize the tested car license plate with 90% accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40353
UI - Skripsi Membership  Universitas Indonesia Library
cover
Handison Jaya
"Sistem pengenalan gerakan manusia merupakan teknologi yang penting karena dapat mempermudah pekerjaan manusia dalam berbagai aspek dan membantu manusia yang memiliki keterbatasan. Adapun gerakan yang bisa dikenali adalah gerakan manusia dimana tangan lurus dan berayun, gerakan manusia dimana tangan ditekuk dan berayun, gerakan pergelangan tangan memutar kekanan dan kekiri, serta gerakan tangan ditarik mendekati tubuh dan gerakan tangan mendorong menjauhi tubuh. Salah satu algoritma dalam bidang Artificial Intelligence yang bisa digunakan adalah Hidden Markov Model (HMM).
HMM sendiri merupakan suatu permodelan statistika yang dimana sistem yang dimodelkan diasumsikan merupakan proses Markov yang memiliki state/keadaan yang tersembunyi (hidden). Pada penelitian ini digunakan sensor Inertial Measurement Unit sebagai pendeteksi gerakan manusia. Komunikasi antara sensor dengan komputer dilakukan secara nirkabel menggunakan XBee. Sistem yang dibuat dapat mengenali enam gerakan manusia tadi secara real time. Hasil pengujian menunjukkan bahwa HMM dapat mengenali gerakan manusia dengan tingkat akurasi sebesar 88% dalam waktu 0.004 detik.

Human motion recognition is an important technology to be developed, as it can facilitate human work and also help people with disabilities. As for motion, sytem could recognize six motion, which is human arms straight and swinging, human hand bent and swinging, hand twisting left, hand twisting right, hand push forward, and hand pull inward. One of Artificial Intelligence algorithm that can be used is HiddenMarkov Model (HMM).
HMM itself is a statistical model where the system which being modelled was assumed as Markov process that has hidden state. This research used Inertial Measurement Unit sensor as human motion detector. Communication between sensor and computer was conducted wirelessly with XBee. This system can recognize six motion real time. From the results show that Hidden Markov Model can recognize human motion with an accuracy rate of 88% within 0.004 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S5806
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ario Muhammad Fanie
"Skripsi ini dibuat untuk mengenali suatu jenis kawanan ikan berdasarkan perubahan fase dengan menganalisis perubahan fase dari gelombang yang dipantulkan oleh gerakan kawanan ikan. Gelombang yang diterima dari hasil pantulan tersebut akan dikenali dengan metode Hidden Markov Model (HMM) yang telah diprogram ke DSK TMS320C6713. Perubahan fase pada masing-masing kelompok ikan disebabkan oleh perbedaan pada bentuk dan bahan permukaan ikan, kecepatan ikan, serta formasi susunan ikan dalam suatu kelompok yang strukturnya mengikuti gerakan schooling suatu kawanan ikan. Dimana setiap ikan memiliki karakteristik yang unik. Pada Tahap identifikasi dengan metode HMM tingkat pengenalan bias mencapai 100% dengan menggunakan ukuran codebook 128 bit dan jumlah pelatihan 15 sample dan 7 state HMM.

This final project was made to recognize the kind of fishes from their phase changing by analyzing phase changing of the reflected waves that received from the fishes movement. The reflected waves was recognized using the Hidden Markov Model which was programmed in the DSK TMS320C6713. Phase changing in the group of fishes was caused by the difference of the fish form, the surface of the fish, the speed of the fish movement, also the formation of fish in a group that make a schooling movement. Because of that, many group of fishes could have unique characteristic. In the recognition process with Hidden Markov Model (HMM) could reach 100% accuracy using the codebook size of 128 bit, training samples of 15 data and 7 states of HMM."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40527
UI - Skripsi Open  Universitas Indonesia Library
cover
Robby Nelson H.T.
"Skripsi ini bertujuan untuk mengenali karakter (berupa huruf dan angka) dari plat nomor mobil pribadi di Indonesia dari citra hasil pemotretan kamera digital dengan menggunakan Hidden Markov Model (HMM) sebagai metode pengenalan. Terdapat 3 fase utama yang menentukan keberhasilan dari pengenalan, yaitu : pendeteksian lokasi plat nomor mobil dari citra masukan, segmentasi karakter dari plat nomor, dan pengenalan karakter plat nomor. Dua fase utama adalah fase pra-proses Deteksi lokasi plat nomor dilakukan dengan menggunakan assymetric filter (rank filter) terhadap citra yang telah dilakukan proses vertical edge detection. Segmentasi karakter plat nomor dilakukan dengan menggunakan vertical dan horizontal projection dari citra. Setelah itu tiap karakter hasil segmentasi dilakukan proses pengenalan dengan Hidden Markov Model.
Pembentukan parameter HMM untuk pengenalan dilakukan dengan pembentukan codebook database terlebih dahulu. Citra dari karakter untuk training diubah ke domain frekuensi menjadi bilangan vektor yang disebut sample point. Kumpulan beberapa sample point terdekat dikuantisasi menjadi sebuah nilai yang disebut centroid atau codeword yang disimpan dalam sebuah codebook. Dari codebook ini dihitung parameter-parameter HMM untuk tiap karakter. Pada proses pengenalan dihitung besar log of probability HMM yang tertinggi untuk tiap karakter yang menjadi hasil proses pengenalan. Dari percobaan yang dilakukan didapatkan tingkat akurasi sebesar 95 %.

This final project's aim is to be able to recognize Indonesian license plate number from digital camera image using Hidden Markov Model as recognition method. The system consists of 3 main phase, which are: License Plate Detection & Extraction, License Plate Character Segmentation & Extraction and Recognition Phase. The first two is the pre-processing phase. The License Plate is detected by applying asymmetric rank filter to the image that has been vertical edge detected. The License Plate Character Segmentation is done by using vertical & horizontal projection of the image. Then each character from the segmentation phase is recognized using the Hidden Markov Model.
To acquire Hidden Markov Model's parameters for recognition, we need to make codebook database of the sample character images. The sample character images are transformed from spatial domain to frequency domain to become sample point. The near by sample points are then quantized and become values which will be called centroids/ codewords. These centroids are then saved in a codebook. From the codebook, then the Hidden Markov Model Parameters can be calculated for each character. In the recognition phase, the highest log of probability of Hidden Markov Model of all character is the recognized character. From many simulations that had been tested, the system can achieve 95 % of accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40348
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bambang Setiawan
"Skripsi ini bertujuan untuk membuat identifikasi iris mata menggunakan Hidden Markov Model dengan proses ekstraksi fitur berupa segmentasi, edge detection dan polarisasi. Proses yang pertama adalah pengambilan citra mata. Kemudian dilakukan proses segmentasi terhadap gambar mata yang didapat tersebut untuk memisahkan bagian iris dan pupilnya. Selanjutnya dilakukan proses polarisasi untuk memisahkan bagian iris dengan pupil kedalam bentuk polar. Hasil polarisasi inilah yang akan dikenali oleh sistem pengenal.
Proses pengenalan iris mata dalam skripsi ini menggunakan Hidden Markov Model yang dilakukan melalui dua tahapan yaitu proses pelatihan data (training) yang dilakukan untuk melatih sistem pengenal yang bekerja, agar dapat mengetahui setiap garis-garis pada iris matanya, serta proses pengenalan iris mata itu sendiri (recognition) yang digunakan untuk mengenali iris mata yang ingin diuji. Seluruh proses yang dilakukan dibuat menggunakan sebuah perangkat lunak. Dari hasil uji coba yang diperoleh, sistem ini dapat mengenali iris mata yang diuji dengan tingkat akurasi mencapai 100%.

A Software of iris identification using hidden markov model is developed. The input image is extracted by using segmentation and polaritation process. The first process is taking of human eye image. Then do the process of segmentation of the image that is to separate iris and pupil from the eyes. Then do the process of polarization to separate iris with the pupil into the polar form. Results of this polarization will be recognized by the user's system.
The process of introduction of human iris in this script use the Hidden Markov Model which is done through two stages of the process of training is to train a system that works, so that each can know the lines on the eye iris, and the introduction of the iris itself (recognition) that is used to identify iris that you want to test. The whole process is created using a software. From the results of the trials obtained, this system can recognize the iris eyes tested with a level of accuracy reached 100%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51124
UI - Skripsi Open  Universitas Indonesia Library
cover
Sijabat, Davit Wasty
"Dalam proses pengarsipan musik dijital, dilakukan penyimpanan sejumlah informasi nada yang terkandung di dalamnya, contohnya chord. Chord merupakan salah satu atribut penting dalam musik yang nantinya akan mempengaruhi harmoni dan melodi suatu musik. Oleh karena itu, dalam menganalisis keseluruhan struktur harmoni dari sebuah bagian musik sering dimulai dengan melabelkan setiap chord pada bagian musik tersebut.
Skripsi ini mensimulasikan pengenalan chord terisolasi dengan metode HMM. Prosesnya meliputi pelatihan dan pengenalan. Tahap pelatihan antara lain melabelkan chord, membuat codebook, dan memodelkan HMM. Proses pengenalan chord mengacu pada nilai yang mendekati probabilitas database yang telah dibuat. Berdasarkan hasil variasi beberapa bobot codebook dan repetisi, maka akurasi sistem paling optimal bernilai 98,33%, yaitu kombinasi bobot codebook 128 dan repetisi 20.

Setting databases of digital music - there are much information of tones saved, for example chords. Chord is one of the most important part of music that build the harmonic structure and its melody. Hence, analyzing the overall harmonic structure of musical piece often starts with labelling every chord at the part of music being analyzed.
This minithesis had simulated isolated chord recognition with HMM method. There are two main processes : training and recognition. Training consists of labelling every chord, making codebook, and modelling HMM parameters. The recognition value reference on the probability value that approach database had been made. Based on the simulation with variation combined both codebook and repetion, thus the optimum value of this system is 98,33% that both combination codebook 128 and repetion 20.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51457
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>