Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 203488 dokumen yang sesuai dengan query
cover
Hamzah Basari
"Turbine blade Nickel base superalloy terangkai dalam turbine section pada sistem gas turbine yang berada tepat setelah combuster section berfungsi mentransformasikan sejumlah energi kinetik dari gas buang menjadi sejumlah usaha mekanik sehingga unit ini merupakan komponen yang mengabsorbsi energi atau stress terbesar dari sistem engine pesawat. Dalam aplikasinya, turbine section kerap mengalami overheat dengan temperatur dapat mencapai lebih dari 1100 °C. Hasil penelitian pemanasan isothermal sampel Nickel base superalloy sebesar 1200 °C dan dengan waktu tahan 1, 2, 3, 4 dan 5 jam didapatkan pengaruh berupa terjadinya pertambahan panjang cacat, perubahan struktur mikro dan penurunan harga kekerasan.

Nickel base superalloy turbine blade which is in turbine section bolted to the combustion section functions to transform a portion of the kinetic energy in the exhaust gases into mechanical work. Therefore, it absorbs most of energy created in combustion and is the most highly stress component in the engine. In service, it sometimes through overheat condition above 1100 °C. Simulation research by heating the pieces of sample at temperature 1200°C with holding time for 1, 2, 3, 4 and 5 hours was investigated. It obtained defect propagation, microstructure change and decreasing number of hardness."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51548
UI - Skripsi Open  Universitas Indonesia Library
cover
Bunga Puspita
"Material uji merupakan turbine blade yang merupakan komponen engine gas turbin pesawat yang diaplikasikan pada temperature tinggi diperkuat dengan mekanisme pengendapan. Dalam aplikasinya pada engine pesawat, turbine blade terekspos suhu 548°C - 1044°C. Namun tidak jarang pada sistem mengalami kondisi over temperature yang disebut overheat. Setelah dilakukan penelitian tentang pengaruh temperatur overheat pada temperatur 900°, 1000°, 1100°, 1200°C dengan waktu tahan selama 1 jam, didapatkan hasil adanya perubahan struktur mikro, pertambahan panjang cacat dan peningkatan kekerasan.

Sample of this research is a turbine blade that is applied in gas turbine which is in high temperature condition, strengthened by precipitation hardening mechanism. In service, it is frequently exposed temperature 548°C - 1044°C and sometimes above that point, called overheat. Research has been done by heating the sample with increased temperature from 900 to 1200°C and the result was investigated. it obtained microstructure change, defect propagation and increased hardness number."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51666
UI - Skripsi Open  Universitas Indonesia Library
cover
Ari Agustar
"Pada aplikasi temperature tinggi (>650℃) setelah pemakaian beberapa lama. Kebanyakan material akan kehilangan kemampuannya untuk mempertahankan kekuatan serta ketahanan terhadap oksidasi dan korosi temperature tinggi serta kekuatannya akan menurun. Hal ini akan mengakibatkan pendeknya umur pakai dari material dan harus segera diganti yang tentu saja akan menambah biaya.
Pada penelitian ini dilakukan pemanasan isothermal hingga temperature 950°C dengan neningkatan waktu tahan 0, 1, 2, 3, 4, hingga 5 jam. Dengan semakin lamanya waktu whan. maka ukuran butir akan semakin besar pula dan presipilat yang ada dalam marerial Ni-base superalloy juga akan larut. Presipitar ini berfungsi untuk menghambat pertumbuhan butir.
Pada penelitian yang dilakukan terjadi kenaikan ukuran bulir setelah pemanasan isothermal dengan waktu tahan 5 jam sebesar 9,31 pm dibandingkan dengan ukuran butir pemanasan tanpa waktu tahan yang hanya sebesar 99,91 pm.
Peningkatan waktu tahan 1-5 jam pada temperatur 950°C maka cenderung terjadi penurunan kekersan dari 170 kg/mm2 menuju 151 kg/mm2, kecuali pada pemanasan tanpa waktu tahan kekerasan naik dari 161 kg/mm2 menuju 170 kg/mm2.
Setelah melakukan perhitungan toritis didapat nilai n sebesar 22, Q sebesar 438.933 J/mol, dan A sebesar 1.1 x 10 58. Dari nilai tersebut maka didapat modifikasi dari model Sellars yang digunakan untuk memprediksi pertumbuhan butir Nickel-base superalloy."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S41646
UI - Skripsi Membership  Universitas Indonesia Library
cover
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2004
T39824
UI - Tesis Membership  Universitas Indonesia Library
cover
Wafdi Fitri
"Perkembangan dunia industri yang sangat cepat membutuhkan kemampuan peralatan yang tinggi. Kemampuan peralatan sangat dipengaruhi oleh desain, kondisi operasi dan pemilihan material. Pada Nickel base superalloy, paduan memberikan pengaruh dalam mengontral ukuran butir austenit dan memberikan kekuatan temperatur tinggi dengan membentuk endapan pada butir dan butir yang mempengaruhi migrasi batas butir dalam pertumbuhan butir selama pemanasan. Penelitian rentang pengaruh temperatur terhadap pertumbuhan butir austenit dilakukan dengan agar berguna untuk mendapatkan butir yang seragam. Untuk mendapatkan butir yang seragam bergantung pada siklus pemanasan yang dilakukan terhadap material nickel base superalloy. Pemanasan ini akan memberikan pengaruh pada kelarutan endapan yang berpresipitasi pada matrik. Pertumbuhan butir austenit nickel base superalloy KHR45A selama pemanasan pada temperatur 800°C, 900°C dan 1000°C dengan waktu tahan yang sama yaitu 2 jam memperlihatkan peningkatan diameter butir austenit. Butir tumbuh dari 97,12 μm menjadi 121,21 μm. Unsur paduan memberikan pengaruh pada struktur mikro nickel base superalioy KHR45A. Endapan ini berpengaruh pada pertumbuhan batas butir austenit. Peningkatan temperatur pemanasan nickel base superalioy KHR45A menghasilkan penurunan nilai kekerasan dari 161 kg/mm² menjadi 153 kg/mm². Hai ini dikarenakan larutnya endapan dengan peningkatan temperatur. Energi aidivasi (Qgg) penelitian sebesar 387.500 J/mol, dengan nilai n sebesar 39 dan nilai konstanta A sebesar 2,0125 x 10pangkat 93. Dengan menggunakan nilai diatas tersebut didapatkan simulasi pertumbuhan butir yang mendekati hasil penelitian."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S41374
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifka Maulidya
"Austenit sisa bersifat metastabil pada suhu ruang sehingga dapat bertransformasi menjadi martensit sehingga menyebabkan delayed crack, yang terjadi setelah beberapa lama proses produksi, pada bucket tooth excavator dengan material baja HSLA. Penelitian ini berfokus pada proses perlakuan panas yang dilakukan, yaitu pada tahapan austenisasi. Austenisasi dilakukan pada temperature 926°C dengan variable waktu tahan 28 menit, 43 menit, 58 menit, dan 73 menit. Sampel pengujian awalnya berupa keel block hasil normalisasi temper, yang kemudian dipotong menjadi balok dengan dimensi 4x1x4 cm. Karakterisasi dilakukan pada sampel as-QTT dan setelah ditempering, dimulai dari pengamatan struktur mikro menggunakan mikroskop optic dan Scanning Electron Microscope (SEM), serta pengujian kekerasan mikro (microvickers) dan kekerasan makro (Rockwell C). Setelah diamati, diperoleh bahwa sampel baja as-QTT memiliki struktur mikro yang didominasi oleh tempered martensit, namun ditemukan juga keberadaan lower bainite dan sejumlah kecil austenite sisa. Semua variabel temperatur tempering menghasilkan bentuk struktur mikro yang sama, namun memiliki presentase austenite sisa yang berbeda-beda. Seiring bertambahnya waktu tahan austenisasi, ukuran butir dan martensite menjadi semakin kasar. Kekerasan baja mengalami peningkatan seiring bertambahnya waktu austenisasi yaitu dari 486 HV menjadi 522 HV pada waktu tahan 58 menit, lalu menurun menjadi 450 pada waktu tahan 73 menit.

ABSTRACT
Retained Austenite is metastable at room temperature so that it can be transformed into martensite, causing delayed cracks, which occur after a long time of the production process, on bucket tooth excavators with HSLA steel material. This research focus on the heat treatment process carried out, especially in the austenitizing stage. Austenitizing was carried out at a temperature of 926°C with a variable holding time of 28 minutes, 43 minutes, 58 minutes, and 73 minutes. Initially the test sample was a tempered normalized keel block, which was then cut into blocks with dimensions of 4x1x4 cm. Characterization is carried out on as-QTT samples and after tempering, starting from observing microstructure using optical microscopy and Scanning Electron Microscope (SEM), as well as testing micro hardness (microvickers) and macro hardness (Rockwell C). After observing, it was found that the as-QTT steel sample had a micro structure dominated by tempered martensite, but the presence of lower bainite and a small amount of remaining austenite was also found. All tempering temperature variables produce the same microstructure, but have different residual austenite percentages. As the austenisation holding time increases, grain size and martensite become increasingly coarse. The hardness of steel has increased with increasing austenisation time from 486 HV to 522 HV at 58 minutes holding time, then decreased to 450 at 73 minutes holding time.
"
2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lendi Trigondo
"ABSTRAK
Penelitian terhadap proses penghalusan butir harus dilakukan pada saat ini untuk mendapatkan material dengan sifat mekanis yang baik yang diharapkan dapat bermanfaat untuk masa depan industri. Penelitian ini bertujuan untuk mengetahui pengaruh variasi temperatur canai hangat multi pass dan waktu tahan terhadap kekerasan, struktur mikro, dan besar butir baja karbon rendah. Sampel dideformasi pada temperatur 500˚C dan 550˚dengan waktu tahan dan 10 menit dan derajat deformasi 20%-20%-20%-20%. Kemudian di-quench dengan media air. Hasil penelitian menunjukkan bahwa semakin rendah temperatur canai hangat maka butir yang dihasilkan semakin halus dan kekuatan material yang dihasilkan juga lebih tinggi. Selain itu semakin singkat waktu tahan maka butir yang dihasilkan semakin halus dan kekuatan material yang dihasilkan juga lebih tinggi. Hasil yang didapatkan dari temperatur canai yang lebih rendah dan waktu tahan lebih singkat adalah ukuran butir 17,19 2m dengan nilai kekuatan 621 MPa.

ABSTRACT
Nowadays, the research of grain refinement process must be done, to get material with good mechanical properties that expected will be benefit for industry in the future. The object of the present work is to investigate the effect of temperature and delay time warm rolling multi pass on hardness, microstructure, and grain size of Low Carbon Steel. The samples deformed at temperature of 500 and 550 with holding time of and 10 minutes and the degree of deformation of 20% -20% -20% -20%. Then, the samples were quenched by water. Experimental results have shown that the lower the temperature of warm roll produced finer grain and higher strength. Shorter holding time produce finer grain and higher strength. The results obtained from the rolled lower temperatures and shorter holding time is the grain size of 17.19 2m with 621 MPa. "
Fakultas Teknik Universitas Indonesia, 2011
S884
UI - Skripsi Open  Universitas Indonesia Library
cover
Fakhril Maula
"Menyambut MP3EI 2025, industri manufaktur merupakan salah satu penopang utama dalam memenuhi target MP3EI 2025. Pengembangan pengelasan terutama metode las busur semakin penting untuk dilakukan agar proses manufaktur berjalan efisien. Metode las busur yang memiliki kualitas bagus hingga saat ini adalah metode las TIG. Pada pengelasan baja tahan karat biasanya mengalami sensitisasi yang berakibat pada rentannya baja tersebut terserang korosi intergranular dan korosi pada temperatur tinggi, salah satu cara untuk mencegah sensitisasi ini adalah dengan cara solution treatment dengan temperatur di atas 1000 ⁰C.
Tujuan penelitian ini adalah untuk mengetahui temperatur dan waktu tahan optimum dengan variasi temperatur 1050, 1100 dan 1150 ⁰C serta waktu tahan 30, 60 dan 90 menit. Karakterisasi pada penelitian ini adalah uji foto mikro dan kekerasan dan membandingkan pengaruh variasi temperatur dan waktu tahan.
Hasil penelitian menunjukkan bahwa semakin tinggi temperatur solution treatment semakin rendah kekerasannya dan semakin lama waktu tahan solution treatment semakin rendah nilai kekerasannya. Hal ini juga didukung oleh foto mikro yang menunjukkan bahwa semakin tinggi temperatur solution treatment struktur austenit pada hasil lasan baja tahan karat AISI 316 semakin dominan dan endapan kromium karbida terdifusi, begitu juga dengan waktu tahan semakin lama waktu tahan struktur austenit semakin terbentuk sempurna dan endapan kromium karbida terdifusi. Berdasarkan hasil di atas dapat diambil kesimpulan bahwa temperatur solution treatment untuk lasan baja tahan karat AISI 316 adalah 1150 ⁰C dengan waktu tahan 90 menit.

To face MP3EI 2025 designed by Indonesian Monetery Ministry, manufacture industries are one of the main support to reach MP3EI target in 2025. Development of welding especially arc welding is one of the important welding to get more efficient manufacturing process. An arc welding methode which has best quality is tungsten inert gas (TIG) welding. One of the problem in welding stainless steel is sensitization that occurs in the area of heat affected zone. One of the methode to prevent this sensitization is by doing treatment with temperature more than 1000 ⁰C.
The goal of this research is to know optimum solution treatment condition, a combination of temperature and holding time,with temperature variation are 1050, 1100 and 1150 ⁰C, holding time variation are 30, 60 and 90 minutes. The microstructure observation and hardness less were carried out to examine the optimal solution treatment conditions. This research characterization are microstructure and hardness test and comparate effect of temperature and holding time variation.
The results show that increasing solution treatment temperature, hardness value decrease and increasing holding time, hardness value decreases also. Micro photoghraphs support the result above which show that increasing solution treatment temperature, austenit structure in stainless steel AISI 316 weldment was more dominant and chromium carbide deposit undergo diffusion. It was also found that at a certain temperature, increasing the holding time will result in more austenite on the microstructure. According the result above, it can be conclude that the temperature solution treatment for stainless steel AISI 316 weldment is 1150 ⁰C with holding time of 90 minutes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S54608
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iswanto
"Material yang digunakan sebagai bahan struktural haruslah memiliki kekuatan luluh yang tinggi, kemampuan las yang baik dan kekuatan yang tinggi. Sehingga selama pemakaian dan perlakuan lainnya mampu berjalan maksimal. penelitian ini dilakukan agar kita dapat mengetahui sifat-sifat baja HSLA setelah perlakuan panas, seperti perubahan sifat mekanik dari material baja dan perubahan mikrostrukturnya. Baja HSLA direheating pada temperatur, waktu tahan dan media pendingin yang berbeda, yaitu 9000C dan 10000C, dengan tanpa waktu tahan dan waktu tahan 5, 20 dan 40 menit dengan menggunakan media pendingin air dan udara.
Hasil penelitian menunjukkan bahwa semakin lama waktu tahan maka austenit prior yang terbentuk akan semakin besar, dimana presentase bertambahnya ukuran butir austenit berada pada kisaran 9 sampai 11%. Sedangkan temperatur dan waktu tahan yang berbeda tidaklah berpengaruh terhadap ukuran butir ferit. Namun terjadi perbedaan atau perubahan pada baja sebelum dan sesudah reheating, namun hanya pada reheating 10000C saja, dimana ukuran butir ferit mengalami perbesaran sampai 25-35%. Sedangkan untuk kekerasan, proses reheating yang dilakukan tidaklah berpengaruh terhadap perubahan kekerasannya.

Material used in structural application should exhibit high yield strength, good weld ability and high strength, thus it can shows good performance during its applications. The aim of this research is to understand the properties of HSLA steels after heat treatment, such as changes in mechanical properties and microstructure. HSLA steel was reheated on different temperature, holding time and cooling medium, which were at 900oC and 1000oC, with no holding time and holding time 5, 20 and 40 minutes, and with water cooled and air cooled condition.
The results showed that the longer the holding time, the bigger the size of prior austenite formed where the percentage of increasing of austenite grain size is in range 9 to 11%. While different on temperature and holding time showed less effect in change of ferrite grain size. But there is such a difference or change in the HSLA steel before and after reheating, particularly when reheated at 1000oC, where the grain size of ferrite having a magnification up to 25-35%. Further, reheating process applied did not affect hardness of HSLA materials
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S906
UI - Skripsi Open  Universitas Indonesia Library
cover
Dino Adipradana Darwanto Haroen
"

High-strength low alloy steel atau biasa disebut baja HSLA merupakan material yang digunakan untuk komponen excavator bucket tooth pada industri alat berat. Komponen ini diproduksi di Indonesia tanpa adanya kegagalan pada produk, namun ketika diekspor ke luar negeri, produk mengalami retak yang diindikasikan sebagai delayed crack. Penelitian sebelumnya menyatakan bahwa delayed crack ini terjadi akibat hadirnya austenit sisa yang merupakan fasa metastabil dan dapat bertransformasi secara isotermal menjadi fasa lain serta menghasilkan tegangan sisa sehingga berujung pada inisiasi retak. Penelitian ini memfokuskan pada metode untuk mengurangi jumlah austenit sisa dengan memvariasikan waktu tempering pada perlakuan double tempering (QTT). Namun, nilai kekerasan akhir juga dipertimbangkan pada penelitian ini agar sesuai pada standar komponen industri alat berat. Temperatur tempering yang digunakan adalah 205°C dan waktu tempering yang digunakan adalah 68 menit x 2 (t1), 81 menit x 2 (t2), 94 menit x 2 (t3), dan 107 menit x 2 (t4). Perlakuan tempering dapat secara efektif menurunkan jumlah austenit sisa karena ketika tempering austenit sisa akan terdekomposisi menjadi fasa lain. Selama perlakuan tempering juga, martensit akan terdekomposisi menjadi tempered martensite sehingga kehilangan sebagian atom karbonnya (loss of tetragonality) dan menjadi lebih lunak. Karakterisasi yang dilakukan pada penelitian ini adalah OM, SEM, Image-J (image analyzer), microvickers (kekerasan mikro), dan Rockwell C (kekerasan makro). Setelah dianalisis, penelitian ini mendapatkan hasil mikrostruktur berupa martensit (fresh martensite & tempered martensite), bainit (lower bainite), dan austenit sisa. Ditemukan pula karbida transisi pada bilah-bilah martensit. Ukuran fasa martensit (panjang bilah/jarum) tidak mengalami perubahan yang signifikan (cenderung seragam) seiring peningkatan waktu tempering. Peningkatan waktu tempering memengaruhi jumlah austenit sisa yang mengalami penurunan dan jumlah tempered martensite meningkat. Jumlah austenit sisa seiring peningkatan variabel waktu tempering mengalami penurunan dari 2.88%, 1.93%, 1.15%, dan 0.65%. Sementara itu, nilai kekerasan yang dihasilkan seiring meningkatnya waktu tempering adalah 49.43 HRC, 48.21 HRC, 47.78 HRC, dan 46.93 HRC dimana nilai kekerasan mengalami penurunan yang tidak signifikan. Maka, peningkatan waktu tempering dari 68 menit x 2 (t1), 81 menit x 2 (t2), 94 menit x 2 (t3), hingga 107 menit x 2 (t4) akan menurunkan potensi terjadinya delayed crack karena jumlah austenit sisa dapat berkurang, namun tetap memiliki nilai kekerasan yang baik.


The high-strength low alloy steel or commonly called HSLA steel is a material used for bucket tooth excavator components in the heavy equipment industry. This component was produced in Indonesia without product failure, but when exported abroad, the product experienced cracks which was indicated as delayed crack. Previous studies have suggested that this delayed crack occurred due to the presence of retained austenite which is a metastable phase and can be transformed isothermally into another phase and produces residual stress resulting in crack initiation. This study focuses on methods to reduce the amount of retained austenite by varying the tempering time in the double tempering (as-QTT) treatment. However, the final hardness value was also considered in this study to fit the heavy equipment industry component standard. The tempering temperature was 205°C and the tempering time was 68 minutes x 2 (t1), 81 minutes x 2 (t2), 94 minutes x 2 (t3), and 107 minutes x 2 (t4). The tempering treatment can effectively reduce the amount of residual austenite because when tempering the retained austenite will decompose into another phase. During tempering too, martensite will decompose into tempered martensite so that it loses some of its carbon atoms (loss of tetragonality) and becomes softer. The characterizations carried out in this study are OM, SEM, Image-J (image analyzer), microvickers (micro hardness), and Rockwell C (macro hardness). After being analyzed, this study obtained the results of microstructure in the form of martensite (fresh martensite & tempered martensite), bainite (lower bainite), and retained austenite. Also found transition carbides on martensite laths. The size of the martensitic phase (length of the lath/needle) does not change significantly (tends to be uniform) with increasing tempering time. An increase in tempering time affects the amount of retained austenite that has decreased and the amount of tempered martensite increases. The amount of retained austenite with increasing tempering time variables decreased from 2.88%, 1.93%, 1.15%, to 0.65%. Meanwhile, the value of hardness produced with increasing tempering time was 49.43 HRC, 48.21 HRC, 47.78 HRC, and 46.93 HRC where the value of hardness experienced an insignificant decrease. Thus, increasing the tempering time from 68 minutes x 2 (t1), 81 minutes x 2 (t2), 94 minutes x 2 (t3), until 107 minutes x 2 (t4) will reduce the potential for delayed cracks to occur because the amount of retained austenite can be reduced, but still has a good hardness value.

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>