Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 172860 dokumen yang sesuai dengan query
cover
Leni Nur Hidayati
"Kebutuhan layanan multimedia berkembang dengan pesat melalui kanal radio (wireless channels) mendorong terbentuknya sistem transmisi citra nirkabel (wireless image transmission systems) baik pada kanal AWGN maupun kanal fading. Aplikasi dari transmisi citra melalui kanal nirkabel sangat menarik untuk diamati karena hal ini memerlukan desain yang seperti dari penggunaan pengkodean (coding) untuk kompresi dari citra dikarenakan keterbatasan sumber daya seperti bandwidth dan daya energi untuk transmisi. Untuk mengurangi ukuran data yang ditransmisikan digunakan teknik kompresi citra, salah satunya yaitu Run Length Encoding (RLE).
Saat ini, pentingnya identifikasi biometric mengalami peningkatan seiring dengan adanya perdagangan elektronik (electronic commerce). Identifikasi tanda tangan dikembangkan secara luas sebagai salah satu metoda identifikasi biometric. Salah satu metoda identifikasi untuk tanda tangan digunakan Hidden Markov Model (HMM).
Dalam tesis ini dilakukan pengenalan citra tanda tangan yang telah ditransmisikan pada kanal fading Rayleigh dengan menggunakan metode Hidden Markov Model (HMM). Sebelum ditransmisikan, citra tanda tangan dikompresi terlebih dahulu dengan menggunakan RLE. Citra tanda tangan ditransmisikan beberapa kali untuk disimpan pada basis data sedangkan pada proses pengenalan citra tanda tangan hanya ditransmisikan sekali saja untuk dijadikan sebagai citra uji.
Pada tahap pembentukkan basis data, citra tanda tangan diubah menjadi vektor sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword. Kumpulan codeword akan disimpan sebagai codebook di dalam basis data. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan urutan observasi atau codeword dari setiap sample citra tanda tangan.
Dengan menggunakan codebook berukuran 32, 64 dan 128 bit dengan jumlah training 10 dan 20 kali, diperoleh tingkat akurasi pengenalan citra tanda tangan pada kanal fading Rayleigh dengan tidak menggunakan kompresi RLE yaitu antara 0 sampai 36 % sedangkan yang menggunakan kompresi RLE akurasinya sebesar 60 % sampai 76 %. Rasio kompresi citra tanda tangan didapatkan antara 97,78% sampai 98,42 %. Probabilitas kesalahan simbol citra tanda tangan yang tidak menggunakan RLE yaitu 0,9749 sampai dengan 0,9762 sedangkan yang menggunakan kompresi RLE sebesar 0,6785 sampai 0,9691.

The need of multimedia services growth increasingly over wireless channels that encourage wireless image transmission systems both through AWGN or fading channel. Application from image transmission over wireless channels are very interesting to be observation because its need the good design from compression coding because the limited resource such as bandwidth and energy resource for transmission. To reduce transmission data size, image compression technique is used, such as Run Length Encoding (RLE).
Recently application of biometric identification increases because of electronic commerce. Signature identification was extended as once method of biometric identification. Once of signature identification method is Hidden Markov Model (HMM).
In this research recognition of transmitted signature on Rayleigh fading channels used HMM. Before transmission, signature image compressed with RLE. Signature image transmitted more once times then it?s saved at data base but at the recognition process signature image only transmitted once time as tested image.
In the process of making data base, signature image changed to be vector as sample point and the nearest points will be quantized as centroid or codeword. The collection of codeword will be stored as codebook in data base. Recognition is performed by comparing the value log of probability HMM which computed base on sequences of observation or codeword each sample from signature image.
Base on using codebook 32, 64 and 128 bit with 10 and 20 training, can reach performance of signature image recognition at Rayleigh fading channel if not using RLE compression is 0 % ? 36 % and if using RLE compression is 60 % - 76 % . Compression rate of signature image is 97,78% - 98,42%. Probability of symbol error of signature image which not using RLE compression is 0,9749 ? 0,9762 but if using compression RLE is 0,6785 ? 0,9691.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
T40947
UI - Tesis Open  Universitas Indonesia Library
cover
Leni Nur Hidayati
"Kebutuhan layanan multimedia berkembang dengan pesat melalui kanal radio (wireless channels) mendorong terbentuknya sistem transmisi citra nirkabel (wireless image transmission systems) baik pada kanal AWGN maupun kanal fading. Aplikasi dari transmisi citra melalui kanal nirkabel sangat menarik untuk diamati karena hal ini memerlukan desain yang seperti dari penggunaan pengkodean (coding) untuk kompresi dari citra dikarenakan keterbatasan sumber daya seperti bandwidth dan daya energi untuk transmisi. Untuk mengurangi ukuran data yang ditransmisikan digunakan teknik kompresi citra, salah satunya yaitu Run Length Encoding (RLE). Saat ini, pentingnya identifikasi biometric mengalami peningkatan seiring dengan adanya perdagangan elektronik (electronic commerce). Identifikasi tanda tangan dikembangkan secara luas sebagai salah satu metoda identifikasi biometric. Salah satu metoda identifikasi untuk tanda tangan digunakan Hidden Markov Model (HMM).
Dalam tesis ini dilakukan pengenalan citra tanda tangan yang telah ditransmisikan pada kanal fading Rayleigh dengan menggunakan metode Hidden Markov Model (HMM). Sebelum ditransmisikan, citra tanda tangan dikompresi terlebih dahulu dengan menggunakan RLE. Citra tanda tangan ditransmisikan beberapa kali untuk disimpan pada basis data sedangkan pada proses pengenalan citra tanda tangan hanya ditransmisikan sekali saja untuk dijadikan sebagai citra uji. Pada tahap pembentukkan basis data, citra tanda tangan diubah menjadi vektor sebagai titik sample dan titik-titik yang terdekat akan dikuantisasi menjadi centroid atau codeword.
Kumpulan codeword akan disimpan sebagai codebook di dalam basis data. Pengenalan dilakukan dengan membandingkan besaran log of probability HMM yang dihitung berdasarkan urutan observasi atau codeword dari setiap sample citra tanda tangan. Dengan menggunakan codebook berukuran 32, 64 dan 128 bit dengan jumlah training 10 dan 20 kali, diperoleh tingkat akurasi pengenalan citra tanda tangan pada kanal fading Rayleigh dengan tidak menggunakan kompresi RLE yaitu antara 0 sampai 36 % sedangkan yang menggunakan kompresi RLE akurasinya sebesar 60 % sampai 76 %. Rasio kompresi citra tanda tangan didapatkan antara 97,78% sampai 98,42 %. Probabilitas kesalahan simbol citra tanda tangan yang tidak menggunakan RLE yaitu 0,9749 sampai dengan 0,9762 sedangkan yang menggunakan kompresi RLE sebesar 0,6785 sampai 0,9691.

The need of multimedia services growth increasingly over wireless channels that encourage wireless image transmission systems both through AWGN or fading channel. Application from image transmission over wireless channels are very interesting to be observation because its need the good design from compression coding because the limited resource such as bandwidth and energy resource for transmission. To reduce transmission data size, image compression technique is used, such as Run Length Encoding (RLE). Recently application of biometric identification increases because of electronic commerce. Signature identification was extended as once method of biometric identification. Once of signature identification method is Hidden Markov Model (HMM).
In this research recognition of transmitted signature on Rayleigh fading channels used HMM. Before transmission, signature image compressed with RLE. Signature image transmitted more once times then it?s saved at data base but at the recognition process signature image only transmitted once time as tested image. In the process of making data base, signature image changed to be vector as sample point and the nearest points will be quantized as centroid or codeword. The collection of codeword will be stored as codebook in data base. Recognition is performed by comparing the value log of probability HMM which computed base on sequences of observation or codeword each sample from signature image.
Base on using codebook 32, 64 and 128 bit with 10 and 20 training, can reach performance of signature image recognition at Rayleigh fading channel if not using RLE compression is 0 % ? 36 % and if using RLE compression is 60 % - 76 % . Compression rate of signature image is 97,78% - 98,42%. Probability of symbol error of signature image which not using RLE compression is 0,9749 ? 0,9762 but if using compression RLE is 0,6785 ? 0,9691."
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27559
UI - Tesis Open  Universitas Indonesia Library
cover
Maria Yulianti S.
"Tugas akhir ini dibuat untuk merancang perangkat lunak yang dapat mengidentifikasi retina manusia melalui proses image processing dengan menggunakan Hidden Markov Model. Dalam pembuatan perangkat lunak indetifikasi ini terdiri atas dua bagian, yakni pembentukan database dan proses identifikasi itu sendiri. Pembentukan database akan menghasilkan codebook dan nilai probabilitas HMM. Identifikasi dilakukan dengan mengambil hasil scanning retina dari rumah sakit. Kemudian dilakukan proses normalisasi dan ekstraksi terhadap gambar retina yang didapat untuk memindai pola pembuluh darah kapiler pada retina.
Proses pengenalan retina dalam tugas akhir ini menggunakan Hidden Markov Model yang dilakukan melalui dua tahapan yaitu proses pelatihan data (training) yang dilakukan untuk melatih sistem pengenal yang bekerja agar dapat mengetahui setiap jenis pola pembuluh darah yang ada, serta proses pengenalan retina itu sendiri (recognition) yang digunakan untuk mengenali retina yang ingin diuji. Seluruh proses yang dilakukan dibuat menggunakan sebuah perangkat lunak untuk memecahkan masalah-masalah matematis. Dari hasil uji coba yang diperoleh, sistem ini dapat mengenali retina yang diuji dengan tingkat akurasi mencapai 100%.

This final project is created to design a software that can identify human retina through image processing using hidden markov model. This identification software consist of two part, that are database development and identification itself. The database development produce codebook and HMM probability value. Identification using retinal scanning from hospital. Then the images will be normalisated and extracted to separate retinal vessel.
The identification process of retinal in this final assignment is using Hidden Markov Model that will be executed in 2 steps. The first step is data training process whose objective is to train the recognition system so it can recognize each kind of retinal vessel, and the second one is the recognition process of all retinal image. All processes are done by using a mathematic problem solution software. From the obtained test results, this system has the ability to recognize the tested retinal image with 100% accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40590
UI - Skripsi Open  Universitas Indonesia Library
cover
Ferry Sugiarto
"Skripsi ini bertujuan untuk membuat suatu pengenalan plat nomor mobil menggunakan Hidden Markov Model dengan proses ekstraksi fitur berupa segmentasi dan skeletonisasi. Hasil gambar plat nomor mobil didapat menggunakan kamera dijital. Kemudian dilakukan proses segmentasi terhadap gambar plat yang didapat untuk memisahkan karakter-karakter angka dan huruf yang ada dalam plat tersebut. Selanjutnya dilakukan proses skleletonisasi untuk mendapatkan bentuk kerangka dari setiap karakter yang ada.
Hasil skeletonisasi inilah yang akan dikenali oleh sistem pengenal. Proses pengenalan plat nomor mobil dalam skripsi ini menggunakan Hidden Markov Model yang dilakukan melalui dua tahapan yaitu proses pelatihan data (training) yang dilakukan untuk melatih sistem pengenal yang bekerja agar dapat mengetahui setiap jenis karakter angka dan huruf yang ada, serta proses pengenalan plat nomor mobil itu sendiri (recognition) yang digunakan untuk mengenali plat nomor yang ingin diuji. Seluruh proses yang dilakukan dibuat menggunakan sebuah perangkat lunak untuk memecahkan masalah-masalah matematis . Dari hasil uji coba yang diperoleh, sistem ini dapat mengenali plat nomor yang diuji dengan tingkat akurasi mencapai 90%.

A Software of car license plate recognition using hidden markov model is developed. The input image is extracted by using segmentation and skeletonization process. The images of car license plate are captured using a digital camera. Then the images will be segmented to separate the number and letter characters. After that, the segmented characters will be skeletonized to obtain the skeleton shape of each character. Then, these skeletonized shapes will be recognized by the recognition system.
The identification process of car license plate in this final assignment is using Hidden Markov Model that will be executed in 2 steps. The first step is data training process whose objective is to train the recognition system so it can recognize each kind of the existing number and letter characters, and the second one is the recognition process of the car license plate that will be used to recognize all the tested license plates. All processes are done by using a mathematic problem solution software. From the obtained test results, this system has the ability to recognize the tested car license plate with 90% accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40353
UI - Skripsi Membership  Universitas Indonesia Library
cover
Handison Jaya
"Sistem pengenalan gerakan manusia merupakan teknologi yang penting karena dapat mempermudah pekerjaan manusia dalam berbagai aspek dan membantu manusia yang memiliki keterbatasan. Adapun gerakan yang bisa dikenali adalah gerakan manusia dimana tangan lurus dan berayun, gerakan manusia dimana tangan ditekuk dan berayun, gerakan pergelangan tangan memutar kekanan dan kekiri, serta gerakan tangan ditarik mendekati tubuh dan gerakan tangan mendorong menjauhi tubuh. Salah satu algoritma dalam bidang Artificial Intelligence yang bisa digunakan adalah Hidden Markov Model (HMM).
HMM sendiri merupakan suatu permodelan statistika yang dimana sistem yang dimodelkan diasumsikan merupakan proses Markov yang memiliki state/keadaan yang tersembunyi (hidden). Pada penelitian ini digunakan sensor Inertial Measurement Unit sebagai pendeteksi gerakan manusia. Komunikasi antara sensor dengan komputer dilakukan secara nirkabel menggunakan XBee. Sistem yang dibuat dapat mengenali enam gerakan manusia tadi secara real time. Hasil pengujian menunjukkan bahwa HMM dapat mengenali gerakan manusia dengan tingkat akurasi sebesar 88% dalam waktu 0.004 detik.

Human motion recognition is an important technology to be developed, as it can facilitate human work and also help people with disabilities. As for motion, sytem could recognize six motion, which is human arms straight and swinging, human hand bent and swinging, hand twisting left, hand twisting right, hand push forward, and hand pull inward. One of Artificial Intelligence algorithm that can be used is HiddenMarkov Model (HMM).
HMM itself is a statistical model where the system which being modelled was assumed as Markov process that has hidden state. This research used Inertial Measurement Unit sensor as human motion detector. Communication between sensor and computer was conducted wirelessly with XBee. This system can recognize six motion real time. From the results show that Hidden Markov Model can recognize human motion with an accuracy rate of 88% within 0.004 seconds.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S5806
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rizky Hartaman
"Sampai saat ini, serangan jantung masih menjadi penyebab utama kematian dibanyak tempat di dunia. Salah satunya adalah kelainan pada katup jantung yang dapat dideteksi melalui suara murmur pada detak jantung penderita. Skripsi ini membahas tentang perancangan sistem pengenalan penyakit jantung berdasarkan suara detak jantung dengan metode HMM. Sistem ini terbagi menjadi dua proses utama, yaitu pembentukan database dan pengenalan penyakit jantung. Kedua proses ini dilakukan dengan cara yang hampir sama, yaitu tiap sampel akan mengalami proses pelabelan, pembuatan codebook dan pembentukan parameter HMM. Hanya saja, pengolahan sinyal suara pada proses pengenalan mengacu database yang telah lebih dulu diproses. Dimulai dengan pembentukan vektorvektor data dengan teknik kuantisasi vektor (VQ), yang kemudian dicari suatu nilai centroid yang presisi untuk dijadikan state HMM dalam menentukan nilainilai parameter yang dibutuhkan.
Berdasarkan parameter-parameter inilah, dapat dihitung suatu nilai probabilitas (Log of Probability) maksimum yang akan menunjukkan hasil keluarannya. Dari hasil perancangan sistem ini, akan dibandingkan akurasi sistem terhadap variasi nilai durasi sampel, jumlah sampel, dan ukuran codebook. Pada penelitian ini ukuran codebook yang optimal adalah 64, jumlah database yang optimal sebesar 10 (sepuluh) buah, dan rentang waktu sampel yang optimal adalah 0,7 detik. Sementara akurasi sistem secara keseluruhan bervariasi antara 60% hingga 85%.

Heart attack is still being the number one killer until now all over the world. A part of heart diseases which can be detected by murmur sound and will be explained here is valve anomaly. This thesis is talking about heart disease recognition based on its heart sound system design using HMM method. The system consists of two main processes: database construction and diseases recognition. Both of this processes is done with almost exact ways. Each samples will be processed through labelling, codebook construction, and HMM parameter making. The difference is that in recognizing process, sound signal will be compared to database which has been made before. The whole process is started with data vectors production by vector quantization (VQ) which can be used to analyze precise centroid positions. The centroid will define HMM states and parameters.
A Log of Probability (LoP) will be calculated from the parameter values. The largest value of LoP will be declared as an output of the system. Output of each samples are compared to get system accuracy based on variation of sample duration, sample amount, and codebook size. The optimum codebook size in this research is 64, optimum sample amount in database is 10, and 0.7s sample duration. Overall, accuracy of the system is variating from 60% up to 85%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51389
UI - Skripsi Open  Universitas Indonesia Library
cover
Arief Rahman Yusuf
"Pada skripsi ini dianalisa unjuk kerja teknik switched diversity dengan co-channel interference (CCI) cancellation pada kanal fading Rayleigh. Beberapa persamaan telah diperoleh guna mengevaluasi unjuk kerja yang dinyatakan oleh probability of outage. Dari hasil yang diperoleh terlihat bahwa penggunaan teknik switched diversity akan memberikan unjuk kerja yang lebih balk daripada tanpa teknik diversitas. Hasil yang diperoleh juga menyatakan bahwa semakin tinggi kemampuan untuk melakukan cancellation terhadap interferer yang terkuat maka unjuk kerja akan semakin baik"
Depok: Fakultas Teknik Universitas Indonesia, 2004
S39985
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Kinerja kode low-density parity-check (LOPC) pad a kanal A WGN dan kanal Rayleigh fading tanpa diversitas mudah kita jumpai, tetapi kinerjanya pad a kanalfading dengan diversity combining masih sulit kita temukan. Makalah ini menyajikan kinerja kode LOPC pada kanal Rayleigh fading dengan diversity combining pada sisi penerima. Skema kombinasi yang akan digunakan pada penerima adalah selection- combining (SC), equal-gain combining (EGC), dan maximal-ratio combining (MRC). Hasil simulasi menunjukkan bahwa kinerja BER terbaik diberikan oleh skema kombinasi MRC, lalu diikuti oleh EGC dan Sc. Dengan penggunaan kode LOPC, mampu memberikan coding gain yang besar ketiga skema tersebut. Namun peringkat keunggulan kinerja dari skema MRC, EGC, dan SC tetap tidak berubah,"
620 JURTEL 16:2 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
Chandra Sasmita
"Skripsi ini dibuat untuk merancang perangkat lunak yang dapat mengidentifikasi golongan darah melalui proses 'image processing' dengan menggunakan 'Hidden Markov Model'. Darah manusia terbagi menjadi 4 golongan menurut sistem penggolongan darah ABO. Pengolongan ini dapat dikenali dengan berbagai metode. Skripsi ini bertujuan sebagai penelitian untuk menganalisa pengenalan golongan darah manusia dalam bentuk 'Image' dengan metode 'Hidden Markov Model' (HMM) yang selanjutnya akan dihasilkan keluaran dalam bentuk probabilitas. Proses pengenalan darah dikhususkan dengan memasukkan 'image' ke dalam pemrogaman perhitungan matematis.
Selanjutnya penelitian dilakukan 2 tahapan, yaitu: pembentukan 'database' dan proses pengenalan. Pada proses pembuatan 'database', gambar akan dibagi-bagi menjadi beberapa 'frame' agar lebih memudahkan proses. Setiap 'frame' diubah ke dalam domain frekuensi menjadi bilangan vektor yang disebut 'sample point'. Kumpulan beberapa 'sample point' terdekat dikuantisasi menjadi sebuah nilai yang disebut 'centroid' dan kumpulan 'centroid' ini menghasilkan sebuah 'codeword', untuk kemudian disimpan dalam sebuah 'database codebook'.
Semua data dalam 'database codebook' diolah sehingga menghasilkan parameter-parameter HMM yang kemudian disimpan dalam sebuah 'database' HMM yang akan menghasilkan nilai-nilai 'log of probability' untuk setiap perbandingan target gambar dengan data pada database HMM. Data dengan nilai 'log of probability' yang paling tinggi disimpulkan sebagai keluaran dari keseluruhan proses. This final project of undergraduate program was created to design the software that could identify ABO blood type with applying Hidden Markov Model.

Human blood consist of 4 categories based on ABO blood type. This categorization can be recognized with some method, such as: Fuzzy Logic, Neural Network, Hidden Markov model. The purpose of this project was identify the human blood using special software with applying Hidden Markov Model with minimal error, so the results still can show what the reality are. We got the results from the highest probability that comes from the output of Hidden Markov Model. For better and easiest programming, we used special mathematical software.
Later on, the examination was conducted in 2 steps. The 1st was to make a database and 2nd to do the identification. In the 1st step, the picture was cropped and standardized to the exact same file extension and same matrix form. We call the results as frames in which we change it over to frequency domain that hence numerical vector in which we call it as sample point. Some collection of sample point were calculated as a value that we call as centered point and the collection of these centered points was called codeword that was stored as a database codebook.
All the codeword was calculated to get HMM parameter that was stored in a HMM database as log of probability value for every comparison with the target picture. Log of probability value would show the conclusion of the target picture which also means what type the blood belongs.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40577
UI - Skripsi Open  Universitas Indonesia Library
cover
Arista Wirawan
Depok: Fakultas Teknik Universitas Indonesia, 1998
S39373
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>