Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 59407 dokumen yang sesuai dengan query
cover
Ika Sumanti
"Gas sintesis merupakan campuran gas hidrogen (H2) dan gas karbon monoksida (CO) yang dapat dikonversi menjadi campuran hidrokarbon rantai panjang melalui sintesis Fischer-Tropsch (FT). Sintesis FT memerlukan rasio molar H2/CO sekitar 1 yang berasal dari biomassa. Tujuan penelitian ini adalah membuat dan mempelajari kinerja katalis Fe-Mn untuk sintesis FT yang sudah diterapkan di industri. Sintesis FT dilakukan dalam reaktor fixed bed pada tekanan 20 bar dan suhu 250-280°C. Karakterisasi katalis Fe-Mn industri dilakukan dengan X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), dan BET.
Hasil penelitian menunjukkan bahwa rasio Fe:Mn dan suhu berpengaruh terhadap aktivitas dan selektivitas katalis. Dengan rasio Fe:Mn tinggi dalam katalis (3Fe:Mn)/AG konversi CO dan selektivitas CO2 dibandingkan dengan katalis (Fe:3Mn)/AG. Peningkatan suhu reaksi juga menyebabkan meningkatnya konversi CO dan selektivitas produk. Dengan suhu 280°C pada katalis (3Fe:Mn)/AG, selektivitas produk CH4 , C2, C3, C6+, CO2 diperoleh, sedangkan pada suhu 250 °C hanya memberikan selektivitas C6+ dan CO2. Suhu optimum untuk katalis (3Fe:Mn)/AG adalah 280°C.

Synthesis gas is a mixture of hydrogen (H2) and carbon monoxide (CO) which can be converted into a mixture of long chain hydrocarbons through Fischer-Tropsch synthesis (FT). FT synthesis requires H2/CO molar ratio of about 1 derived from biomass. The purpose of this research is to create and study the performance of Fe-Mn catalysts for FT synthesis which has been applied in industry. FT synthesis performed in a fixed bed reactor at a pressure of 20 bar and a temperature of 250¬280°C. Characterization of Fe-Mn catalyst industry is done by X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and BET.
The results showed that Fe:Mn ratio and temperature affect the catalyst activity and selectivity. With a Fe:Mn ratio is high in the catalyst (3Fe:Mn)/AG CO conversion and selectivity of CO2 compared with the catalyst (Fe:3Mn)/AG. The increasing reaction temperature also caused the CO conversion and product selectivity to increase. With a temperature of 280°C on the catalyst (3Fe:Mn)/AG, the product selectivity of CH4, C2, C3, C6+, CO2 were obtained, while at a temperature of 250°C only C6+ selectivity and CO2 were obtained. The optimum temperature for the catalyst (3Fe: Mn)/AG is 280°C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S379
UI - Skripsi Open  Universitas Indonesia Library
cover
Ricky Kristanda Suwignjo
"Pada penelitian ini akan dilakukan pemodelan kinetika untuk sintesis Fischer Tropsch dengan tekanan operasi mencapai 20 bar dengan variasi rasio H2/CO 1,0 hingga 2,1 serta penambahan logam rhenium sebagai promotor. Mekanisme adsorpsi isotermis Langmuir digunakan untuk menyusun model kinetika. Pemodelan kinetika sintesis Fischer Tropsch dengan katalis kobalt berpenyangga alumina yang sudah ada saat ini sesuai untuk tekanan kurang dari 10 bar.
Hasil penelitian ini menunjukkan bahwa mekanisme reaksi yang sesuai adalah mekanisme insersi CO dengan reaksi hidrogenasi komponen COs oleh Hs sebagai tahap penentu laju. Persamaan model yang sesuai untuk mekanisme tersebut mengandung 3 konstanta, yaitu konstanta kesetimbangan tahap adsorpsi asosiatif reaktan CO (K1), konstanta kesetimbangan tahap adsorpsi disosiatif reaktan H2 (K2), dan konstanta laju tahap hidrogenasi COs oleh Hs (k3). Kenaikan rasio H2/CO menyebabkan rata-rata penurunan nilai K1 dan K2 masing-masing sebesar 53-94% dan 13-82% serta kenaikan k3 sebesar 73-421% pada model kinetika tersebut. Kenaikan rasio H2/CO menyebabkan peningkatan konversi reaktan dan selektivitas komponen produk CH4. Sementara, penambahan logam rhenium tidak menyebabkan perubahan nilai konstanta pada model kinetika tersebut (%selisih nilai konstanta lebih kecil dari 10%). Penambahan logam rhenium (0,05%Re-12%Co/Al2O3) memberikan pengaruh sebagai promotor struktural, yaitu hanya meningkatkan jumlah active site melalui peningkatan dispersi katalis kobalt sehingga konversi meningkat namun selektivitas produk tetap. Variasi rasio umpan H2/CO dan penambahan logam rhenium (0,05%Re-12%Co/Al2O3) tidak menyebabkan perubahan mekanisme reaksi.

This research will build-up a kinetic model for Fischer Tropsch synthesis using alumina supported cobalt catalyst operated in 20 bar with variation of H2/CO syngas ratio from 1.0 to 2.1 and also addition of rhenium metal as promoter in cobalt catalyst. Langmuir isothermic adsorption mechanism is a common method to build-up a kinetic model. Existing kinetic model of Fischer-Tropsch synthesis using alumina supported cobalt catalyst is valid for operating pressure less than 10 bar.
The result of this research showed that CO insertion mechanism with hydrogenation step of COs by Hs component as the rate-limiting step is valid for this Fischer Tropsch synthesis condition. Kinetic equation for this mechanism consists of 3 constants, equilibrium constant for assosiative adsorption for CO reactant (K1), equilibrium constant for dissociative adsorption for H2 reactant (K2), and rate constant for hydrogenation COs by Hs (k3). Higher H2/CO ratio will averagely decrease K1 and K2 by amount 80% and 40 %, respectively, and increase k3 by amount 168 % in those kinetic equation. Higher reactant conversion and CH4 product selectivity is resulted in higher H2/CO syngas ratio. Addition of rhenium metal (0.05%Re-12%Co/Al2O3) give effect as structural promoter, which only increase active site amount through the increase of cobalt catalyst dispersion. Rhenium promoter in cobalt catalyst only increase reactant conversion but not change the product selectivity. Variation of H2/CO syngas feed ratio and addition of rhenium metal (0.05%Re-12%Co/Al2O3) will not change the reaction mechanism occurred.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43231
UI - Tesis Membership  Universitas Indonesia Library
cover
Resti Ayu Khairina
"Pada penelitian ini akan dilakukan pemodelan kinetika untuk sintesis Fischer Tropsch dengan tekanan operasi mencapai 20 bar dengan variasi rasio H2/CO 1,0; 1,5; dan 2,1 serta dengan perubahan logam ferum sebagai promotor pada kondisi operasi yang sama, hanya dengan variasi rasio H2/CO 1,0. Mekanisme adsorpsi isotermis Langmuir digunakan untuk menyusun model kinetika. Pemodelan kinetika sintesis Fischer Tropsch dengan katalis kobalt maupun ferum yang sudah ada saat ini sesuai untuk tekanan kurang dari 10 bar.
Hasil penelitian ini menunjukkan bahwa mekanisme reaksi yang sesuai adalah mekanisme insersi CO dengan reaksi hidrogenasi komponen COs oleh Hs sebagai tahap penentu laju. Persamaan model yang sesuai untuk mekanisme tersebut mengandung 3 konstanta, yaitu konstanta kesetimbangan tahap adsorpsi asosiatif reaktan CO (K1), konstanta kesetimbangan tahap adsorpsi disosiatif reaktan H2 (K2), dan konstanta laju tahap hidrogenasi COs oleh Hs (k3). Kenaikan rasio H2/CO menyebabkan rata-rata penurunan nilai K1 dan K2 masing-masing sebesar 90% dan 56% serta kenaikan k3 sebesar 68% pada model kinetika tersebut. Kenaikan rasio H2/CO menyebabkan peningkatan konversi reaktan dan selektivitas komponen produk CH4. Sementara, untuk perubahan promotor menjadi logam ferum, mekanisme reaksi yang sesuai juga mengakomodasi dari mekanisme insersi CO, serta pada penelitian ini memiliki nilai selektivitas yang lebih tinggi untuk tiap spesi produk CH4, C2-, C2=, C3-, dan C3= , lebih khususnya selektivitas katalis ferum terhadap spesi olefin akan lebih tinggi dibandingkan spesi produk parafin.

In this study, the kinetics for Fischer Tropsch synthesis with operating pressures up to 20 bar with a variation of the ratio of H2/CO 1,0; 1,5; and 2,1 will be modeled as kinetic rate equation using cobalt catalyst and also ferum catalyst at the same operating conditions, only ferum has the only variation of the ratio of H2/CO 1,0. Langmuir isotherm adsorption mechanism used to develop kinetic models. Fischer-Tropsch synthesis kinetics modeling with cobalt corresponding to less than 10 bar in term of pressure.
The results of this study indicate that the corresponding reaction mechanism is insertion mechanism CO hydrogenation reaction components COs by Hs as the rate determining step. Equation appropriate model for the mechanism contains three constants, namely associative adsorption equilibrium constant phase reactants CO (K1), dissociative adsorption equilibrium constant phase reactant H2 (K2), and the rate constant of hydrogenation stage COs by Hs (k3). The increase in the ratio of H2/CO resulted in an average decrease in the value of K1 and K2 respectively by 90% and 56% and 68% increase in k3 on the kinetic model. The increase in the ratio of H2/CO causes an increase in the conversion of the reactant and product components CH4 selectivity. Meanwhile, when the promoter changed to ferum, the corresponding reaction mechanism also accommodates from CO insertion mechanism, and in this study had a higher selectivity values for each product species CH4, C2, C2=, C3-, and C3=, more especially an iron catalyst selectivity to olefins will be higher species than species paraffin products.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58184
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fatimatuts Tsani
"Dalam penelitian ini telah dilakukan preparasi katalis NiMo/γ-Al2O3 dengan metode impregnasi. Pemilihan katalis berbasis nikel ini karena nikel termasuk oksida logam transisi yang memiliki karakter yang dapat diaplikasikan sebagai katalis dan memiliki energi permukaan yang rendah dibandingkan logam transisi. Selain itu, oksida logam lebih banyak digunakan sebagai bahan katalis karena ketersediannya besar dialam, murah serta waktu hidupnya lama. Sebagai penyangga digunakan alumina. Alumina merupakan salah satu katalis penyangga yang terbaik karena mempunyai surface area yang besar untuk logam dengan disperse tinggi dan sifat mekanik yang kuat sehingga dapat digunakan pada reaktor.
Data XRD menunjukkan ukuran kristal dalam katalis NiMo/γ-Al2O3 pada suhu kalsinasi 480°C adalah 252,006 nm dan pada suhu kalsinasi 600°C adalah 84,155 nm. Sementara data BET menunjukkan luas permukaan katalis pada suhu kalsinasi 480°C sebesar 82,11 m2/g dan 110,84 m2/g pada suhu kalsinasi 600°C. Luas permukaan pada alumina sebelum diimpregnasi adalah 255 m2/g. Penurunan luas permukaan katalis ini dikarenakan terbentuknya oksida- oksida Mo, Ni dan P selama proses kalsinasi.
Analisis SEM menunjukkan bahwa katalis yang diperoleh memiliki diameter agregat sebesar 0,5 µm untuk katalis NiMo/γ-Al2O3 dengan suhu kalsinasi 480°C dan 0,4375 µm untuk katalis NiMo/γ-Al2O3 dengan suhu kalsinasi 600°C.
Pengukuran densitas dan viskositas dilakukan pada produk pirolisis untuk dibandingkan dengan lubricant. Pada penelitian ini didapatkan densitas sebesar 0,8821 g/mL dan viskositas sebesar 9,812. Dari data ini, diketahui bahwa dengan menggunakan katalis NiMo/γ-Al2O3 bisa didapatkan produk pirolisis yang hampir mendekati fraksi lubricant.

In this research has been done a preparation of NiMo/γ-Al2O3 catalyst by impregnation method. The selection of catalist is based on the nickel because it?s included in transition metal oxides that possess applicable character as a catalyst and lower surface energy compared with transition metal. Besides that, metal oxides is more applicated as catalyst material supported by it's abundant availability in nature, easy and longer life time. This research used Alumina as the support. Alumina is one the best support catalyst because it has a large surface area for metals with high dispersion and strong mechanical properties that can be used in reactors.
The XRD data shown that the crystal size in NiMo/γ-Al2O3 catalyst at the calcination temperature 480oC is 252.006 nm and at the calcination temperature 600oC is 84.115 nm. Meanwhile, the BET data shown that the catalyst surface area at calcination temperature 480°C and 600°C sequencely is 82.11 m2/g and 110.84 m2/g at 600°C. The surface area before imprenation is 255 m2/g. The reduction of this catalyst surface area is due to the formation of oxides Mo, Ni and P during the process of calcination.
SEM analysis shown that catalyst obtained possess a diameter of 0.5 µm and 0.43 µm for NiMo/γ-Al2O3 catalyst at calsination temperature 480°C and 600°C, in sequenece.
The measurement of density and viscosity has been done for pirolysis product to be compared with diesel fuel. In this study, earned that the density of 0.88219 g/mL and viscosity of 9.812 cP. From this data, it is known that by using the catalyst can be obtained NiMo/γ-Al2O3 pyrolysis products with density and viscosity close to lubricant.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S384
UI - Skripsi Open  Universitas Indonesia Library
cover
Eka Rahmawati
"Pengaruh suhu terhadap distribusi produk hidrokarbon dari hasil reaksi aseton khususnya hidrokarbon aromatik perlu diteliti secara detail. Penelitian ini dilakukan untuk mendeteksi keberlangsungan reaksi aseton menjadi hidrokarbon menggunakan katalis HZSM-5 terhadap distribusi produk serta mendeteksi terbentuknya kokas yang disebabkan oleh deaktivasi katalis pada rentang suhu 275°C-350°C. Produk yang terbentuk dianalisis menggunakan GC-MS (Gas Chromatography-mass spectroscophy). Terdapat keterkaitan antara pengaruh suhu terhadap distribusi produk dan kemampuan shape selective catalyst dan komponen pembentukan kokas yang menyebabkan katalis terdeaktivasi.
Hasil uji reaksi aseton menunjukkan bahwa pengaruh suhu terhadap distribusi produk mekanisme reaksi dominan terbentuk isobutena, mesetil oksida dan diaseton alkohol. Sedangkan pembentukan kokas senyawa yang dominan yaitu jumlah rantai karbon C21-C30 sekitar 40-60% dan >C40 sekitar 27-59%. Hasil uji keasaman semakin tinggi suhu maka tingkat keasaman katalis semakin tinggi.

Effect of temperature on the product distribution of hydrocarbon from the reaction of acetone especially aromatic hydrocarbons need to be studied in detail. This study was conducted to detect the continuity of the reaction of acetone into hydrocarbons using HZSM-5 catalyst on product distribution and detecting the formation of coke caused by the catalyst deactivation on the temperature range 275°C-350°C. The product was analyzed using GC-MS (Gas Chromatography- Mass Spectroscophy). There is a link between the effect of temperature on product distribution and the ability to shape selective catalysts and components of coke formation which causes the catalyst deactivation.
Acetone reaction test results indicate that the effect of temperature on product distribution of the dominant reaction mechanism is formed isobutene, mesetil oxide and diacetone alcohol. While the formation of coke which is the dominant compound chain of carbon C21-C30 about 40-60% and> C40 approximately 27-59%. From the test result acidity the higher the temperature the higher the acidity of the catalyst.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43048
UI - Skripsi Open  Universitas Indonesia Library
cover
Altha Marissa
"ABSTRAK
Katalis HZSM-5 biasa digunakan untuk mengkonversi aseton menjadi hidrokarbon. Katalis ini akan mengalami deaktivasi pada waktu tertentu dan hal tersebut dipengaruhi oleh kandungan rasio Si/Al. Pada penelitian ini, katalis diuji dengan mengunakan reaktor unggun tetap (fixed bed), dengan variasi Si/Al 27, 75 dan 140. Karakterisasi katalis menggunakan metode BET, FT-IR dan uji keasaman. Dari penelitian diperoleh hasil bahwa katalis dengan rasio Si/Al=75 memiliki stabilitas konversi aseton selama 7 jam dan memiliki tingkat keasaman paling tinggi. Penyebab deaktivasi katalis yaitu terbentuknya kokas. Keberadaan kokas ini diamati dengan mengunakan FT-IR pada rentang 1540-1600 cm-1 dan metode BET yang menunjukan penurunan luas permukaan sebesar 85-90%. Regenerasi katalis telah berhasil dilakukan dengan mengunakan udara. Luas permukaan katalis setelah regenerasi diperoleh sebesar 285,4 m2/gram dan terdapat pita kokas pada spektrum serapan FT-IR dengan rentang bilangan gelombang 1540-1600 cm-1.

ABSTRACT
HZSM-5 catalysts used to convert acetone into hydrocarbons. The catalyst will undergo deactivation at any given time and it is influenced by the content ratio of Si / Al. In this study, the catalyst was tested by using a fixed bed reactor (fixed bed), with variations of Si / Al 27, 75 and 140. Characterization of catalysts using the BET method, FT-IR and acidity test. From the studies obtained results that the catalyst with the ratio Si / Al = 75 has the stability of the conversion of acetone for 7 hours and has the highest acidity. The cause of catalyst deactivation is coke formation. The presence of coke is observed by using FT-IR in the range 1540-1600 cm-1 and BET methods that show a decrease of 85-90% of surface area. Regeneration of the catalyst has been successfully performed by using air. The surface area of the catalyst after regeneration is obtained at 285.4 m2/gram and there is a ribbon coke in the FT-IR absorption spectrum with the wavenumber range 1540-1600 cm-1."
Fakultas Teknik Universitas Indonesia, 2011
S1117
UI - Skripsi Open  Universitas Indonesia Library
cover
Arief Frianda R
"ABSTRAK
Rhodamin-B merupakan zat warna sintetik yang berbahaya bagi tubuh manusia dan lingkungan. Keberadaan rhodamin-B di perairan tidak diinginkan karena sulit didegradasi secara alami. Teknologi adsorpsi merupakan metode paling efektif untuk menghilangkan zat warna. Kitosan dan clay montmorillonite merupakan adsorben alami yang banyak digunakan karena memiliki afinitas yang baik terhadap zat warna, kapasitas pertukaran ion yang tinggi, serta biodegradable. Pada penelitian ini, adsorben yang digunakan adalah komposit kitosan/polimetil metakrilat/montmorillonite. Komposit ini mempunyai kemampuan adsorpsi yang lebih tinggi dibandingkan polimer kitosan, polimetil metakrilat dan clay montmorillonite saja. Persentase penjerapan rhodamin-B oleh komposit ini mencapai 89,2% pada waktu pengadukan optimum 40 menit.

ABSTRACT
Rhodamine-B is a synthetic dye that harmful to the human body and environment. The presence of rhodamine-B in water is undesirable because it is difficult to degrade naturally. Adsorption technologhy is the most effective method to remove the dye. Chitosan and montmorillonite clay are a natural adsorbent that are widely used because they have a good affinity for dyes, high ion exchange capacity as well as biodegradable. In this study, the adsorbent used is chitosan/ polymethyl methacrylate/montmorillonite composite. This composite has a higher adsorption capacity than chitosan polymer, polymethyl methacrylate and montmorillonite clay only. The adsorption percentage of rhodamine-B by the composite reached 89.2% at optimum stirring time 40 min."
2012
S42948
UI - Skripsi Open  Universitas Indonesia Library
cover
Muharza
"Penelitian ini telah menghasilkan wax ester dengan bahan dasar asam oleat dan stearil alkohol menggunakan biokatalis berupa enzim Candida rugosa lipase (CRL) dan Porcine pancreatic lipase (PPL) untuk menggantikan katalis asam yang tidak ramah lingkungan. Variasi yang dilakukan adalah variasi rasio molar reaktan, persentase enzim, dan waktu reaksi dengan menggunakan metode esterifikasi. Variasi yang ada ini dilakukan untuk mempelajari kinerja enzim CRL dan PPL terhadap produksi wax ester dan memperoleh kondisi optimum dari reaksi.
Dari variasi yang telah dilakukan didapatkan konversi optimum berturut-turut sebesar 58,25 % dan 20,79 % untuk enzim CRL dan PPL dengan jumlah enzim 4 % dan rasio reaktan 1:1 selama 24 jam reaksi. Kinetika reaksi juga dibuat berdasarkan persamaan Michaelis-Menten. Dengan persamaan ini, didapatkan parameter Km dan vmax masing-masing sebesar 3,785 mol/L dan 0,033 s-1 untuk enzim CRL serta 3,139 mol/L dan 0,006 s-1 untuk enzim PPL.

This research has produced wax esters synthesis using oleic acid and long chain alcohol (stearyl alcohol) as substrates and Candida rugosa lipase (CRL) and porcine pancreatic lipase (PPL) as biocatalist was carried out to replace the acid catalyst that is not environmentally friendly. The effects of various reaction parameters such as molar ratio of substrates, amount of enzyme, and reaction time were investigated by using esterification methods to obtain optimum conditions of reaction.
These variations produce optimum conversion of 58,25% and 20,79% for candida rugosa lipase and Porcine pancreatic lipase with 4% the amount of enzyme and molar ratio 1:1 for 24 hours of reaction. Reaction kinetics were also made on the basis using Michaelis-Menten kinetic model. By using this equation, the Km and vmax parameter can be solved with the value of 3,785 mol/L and 0,033 s-1 for Candida rugosa and 3,139 mol/L and 0,006 s-1 for Porcine pancreatic lipase.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S913
UI - Skripsi Open  Universitas Indonesia Library
cover
Ius Pratama
"Simulasi yang dilakukan pada bagian hulu produksi bioetanol generasi dua ini bertujuan untuk mengoptimisasi biaya proses produksi secara sederhana dan dapat dikembangkan selanjutnya variasi metode dalam proses sehingga selanjutnya dapat dilihat tingkat efektivitas dari proses yang dilakukan. Metode yang digunakan ialah dengan hidrolisis asam dalam pemecahan polimer gula yang kemudian difermentasi dengan yeast yang mengandung S.cereviseae. Data yang digunakan berasal dari beberapa penelitian sebelumnya yang dimasukkan sebagai data dan kemudian disimulasikan dengan SuperPro Designer. Analisa sensitivitas variabel pun dilakukan untuk mengetahui variabel yang paling mempengaruhi keekonomian proses.

This upstream bioethanol process simulation aim to optimize process
production cost and the simulation can be modified to any variation of method in the process in bioethanol production to compare the effectivity of each variation. Acid hydrolization is applied in this process design, the acid will crack the polimer of cellulose and fermented by yeast which contain S.cereviseae. The source data in the simulation are obtained from the previous researches that have relation with the process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42625
UI - Skripsi Open  Universitas Indonesia Library
cover
David
"Pada penelitian ini disimulasikan burner industri non-premixed berbahan bakar metana. Burner memiliki konfigurasi wall-fired yang bertujuan untuk menghasilkan flat flame dengan luas penampang yang besar untuk meradiasikan panas secara efektif ke tube-tube yang terdapat dalam furnace pirolisis. Dalam simulasi ini divariasikan geometri dan kecepatan, variasi suhu, dan variasi rasio ekivalensi yang semuanya ini mempengaruhi profil nyala dan temperatur yang dihasilkan. Untuk mensimulasikan burner digunakan konsep pemodelan computational fluid dynamics (CFD) dengan menggunakan program COMSOL Multiphysics. Model menggunakan laju reaksi eddy dissipation model, neraca massa, neraca momentum aliran turbulen k-ɛ, dan neraca energi. Hasil penelitian masih perlu dikaji kesesuaiannya untuk proses pirolisis karena terdapat lebih dari satu pilihan geometri yang memungkinkan.

In this research, a non-premixed industrial burner fueled with methane was simulated. Configuration of burner is wall-fired in order to produce flat flame with broad parameter to radiate heat effectively to the tubes in pyrolysis furnace. This simulation variated geometry and velocity, temperature, and equivalence ratio of combustion that all of these are known to influenced flame profile and resulted temperature. The concept of computational fluid dynamics (CFD) is used with program COMSOL Multiphysics to simulate burner. Modelling is using rate of eddy dissipation model, mass balances, momentum balances of turbulent flow k-ɛ, and energy balance. The results of this research need to be evaluated again for real application in pyrolysis furnace for there are more than one suitable geometry founded."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43274
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>