Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 181883 dokumen yang sesuai dengan query
cover
Matius Wisnu
"ABSTRAK
Titania Nanotubes telah disintesis dengan proses hidrotermal pada suhu 130oC
menggunakan TiO2 P25 pada berbagai kondisi operasi. Penelitian ini mempelajari
pengaruh waktu reaksi hidrotermal, kecepatan pengadukan dan konsentrasi NaOH
terhadap morfologi nanotubes dan kinerjanya pada produksi hidrogen dari gliserol
dan air secara fotokatalisis. Spesimen diinvestigasi dengan SEM, XRD dan EDS.
Pembentukan titania nanotubes dengan produksi hidrogen optimal diperoleh pada
kecepatan pengadukan 400 rpm, konsentrasi NaOH 8 M dengan waktu
hidrotermal yang singkat (6 jam). Titania nanotubes yang telah dikalsinasi pada
suhu 400oC memiliki struktur kristal anatase berukuran ~11nm. Peningkatan laju
pengadukan dari 60 rpm menjadi 600 rpm dapat mengurangi waktu hidrotermal
dari 12 jam menjadi 6 jam dengan morfologi nanotubes yang lebih baik dan
produksi hidrogen yang meningkat hingga 1,5 kali lebih banyak.

Abstract
Titanate nanotubes were synthesized by hydrothermal process at temperature
130oC using commercial titania P25. The experiments were carried out as a
function of hydrothermal time, speed of stirring (rotation per minute), and NaOH
concentration. The specimens were investigated by using various techniques such
as scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy
dispersive x-ray spectroscopy (EDS). Titania nanotubes with the optimum of
produce hydrogen were found to be speed of stirring 400 rpm, 8 M NaOH
concentration, and hydrothermal time 6 hr. The resulting titania nanotubes after
calcinations had good morphology with structure crystal of anatase with diameter
crystal ~11nm. Increasing the speed of stirring from 60 rpm to 600 rpm proven to
reduce hydrothermal time until half-fold (from 12 hr to 6 hr) and increase the
hydrogen production up to 1.5 times.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43488
UI - Skripsi Open  Universitas Indonesia Library
cover
Viona
"Penambahan platina ke dalam titania nanotube arrays dengan menggunakan metode reduksi kimia untuk produksi hidrogen dari gliserol telah dilakukan. Pemilihan metode penyisipan dopan antara reduksi kimia dan fotodeposisi telah diinvestigasi terlebih dahulu dengan menggunakan titania nanopartikel. Metode reduksi kimia memiliki dispersi 82,67%, sedangkan metode fotodeposisi sebesar 47,78%. Karakterisasi FESEM menunjukkan titania nanotube arrays dengan anodisasi ultrasonic bath selama 90 menit menghasilkan ketinggian film mencapai 7 μm. Morfologi titania nanotube arrays menghasilkan hidrogen tujuh kalinya dibandingkan morfologi nanopartikel. Penambahan dopan dengan metode reduksi kimia ke dalam titania nanotube arrays dilakukan dengan memasukkan plat titania berukuran 3,5 x 3,5 cm ke dalam larutan H2PtCl6 dengan konsentrasi tertentu, kemudian ditambahkan NaBH4 sebagai agen pereduksi. Penambahan Pt ke dalam titania nanotube arrays mampu meningkatkan produksi hidrogen, yang terbukti menghasilkan hidrogen 1,7 kalinya dibandingkan dengan titania nanotube arrays tanpa Pt atau 13 kalinya dibandingkan dengan titania nanopartikel tanpa Pt.

Addition of platinum into titania nanotube arrays by chemical reduction to produce hydrogen from glycerol solution has been carried out. The selection methods of insertion dopant between chemical reduction and photodeposition have been investigated fotodeposisi advance using titania nanoparticles. Chemical reduction method has a dispersion of 82.67%, while fotodeposisi method 47.78%. FESEM characterization of titania nanotube arrays using ultrasonic bath anodization have film thickness reach 7 μm. Titania nanotube arrays produce hydrogen seven times compared with titania nanoparticle. Addition of dopants using chemical reduction method is done by entering titania foil sized 3.5 x 3.5 cm into a H2PtCl6 solution with specific concentration, then NaBH4 as reducing agent is added. The addition of Pt into titania nanotube arrays can increase the production of hydrogen, which is proven can generate hydrogen 1.7 times compared with titania nanotube arrays without Pt or 13 times compared with titania nanoparticle without Pt."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S53623
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Salim Afrozi
"Modifikasi fotokatalis TiO2 dalam memproduksi hidrogen dari gliserol dan air telah diinvestigasi. Prekursor yang digunakan adalah TiO2 degussa P-25. Fotokatalis diberi dopan N, Pt, Cu dan Ni, dengan metode impregnasi untuk Cu, Ni dan photo-assisted deposition untuk Pt. Pengaruh banyaknya konsentrasi gliserol juga diamati dalam pengujian untuk melihat produksi hidrogen.
Hasil analisa XRD menunjukkan, fotokatalis TiO2 termodifikasi berukuran nanometer dengan rentang 16 nm sampai dengan 23 nm, sedangkan analisa DRS menunjukkan TiO2 yang didopan dengan N, Pt, Cu dan Ni dapat merespon aktif pada sinar tampak.
Hasil pengujian menunjukkan fotokatalis TiO2 termodifikasi mampu menghasilkan hidrogen lebih banyak dibanding TiO2 degussa P-25, sebesar 4 kali untuk dopan N, 34 kali untuk dopan Pt(1%) dan N, 10 kali untuk dopan Cu(5%) dan N serta 8 kali untuk dopan Ni(5%) dan N. Sampai rentang 50%v, kenaikan produksi hidrogen sebanding dengan kenaikan konsentrasi gliserol.

Modification of TiO2 photocatalyst to produce hydrogen from glycerol and water had been investigated. The precursor was degussa P-25 TiO2. The photocatalyst was doped by N, Pt, Cu and Ni, using impregnation method for Cu, Ni and photo-assisted deposition method for Pt. The effect of glycerol concentration to hydrogen production was also being studied.
XRD analysis results showed that modified TiO2 photocatalyst had nanometer size with range 16 nm to 23 nm, while the DRS analysis showed that TiO2 was doped by N, Pt, Cu and Ni could actively respond to visible light.
The results showed that modified TiO2 photocatalyst could produce more hydrogen compare to degussa P-25 TiO2, 4 times for N dopant, 34 times for Pt (1%) and N, 10 times for Cu (5%) and N, 8 times for Ni (5%) and N. Up to 50%v, the increase of hydrogen production is proportional to the increase of glycerol."
Depok: Fakultas Teknik Universitas Indonesia, 2010
T28022
UI - Tesis Open  Universitas Indonesia Library
cover
Anny
"Pengaruh modifikasi fotokatalis TiO2 dalam memproduksi hidrogen dari gliserol dan air telah diinvestigasi. Prekursor yang digunakan adalah TiO2 degussa P-25 yang dibentuk menjadi nanotube melalui metode hydrothermal dengan bantuan ultrasonikasi. Fotokatalis juga diberi dopan nitrogen dan platina, masing-masing dengan metode impregnasi dan photo-assisted deposition. Pengaruh banyaknya gliserol juga diamati dalam pengujian untuk melihat banyak hidrogen yang terbentuk . Hasil menunjukkan fotokatalis TiO2 yang termodifikasi mampu menghasilkan hidrogen lebih banyak dibanding TiO2 degussa P-25. Analisa DRS menunjukkan N-TiO2 nanotube dapat merespon aktif pada sinar tampak. Namun masih diperlukan perbaikan metode pemberian dopan Pt dan N agar fotokatalis Pt-N-TiO2 dapat aktif pada sinar tampak.

Effects of modified TiO2 photocatalyst for hydrogen generation from glycerol and water application had been investigated in this research. The precursor wass degussa P-25 TiO2 which formed to be a nanotube via hydrothermal method with ultrasonication aid. The photocatalyst was also doped by nitrogen and platina using impregnation and photo-assisted deposition methods respectively. The effect of glycerol concentration to hydrogen production was also being inspected. The results showed that modified TiO2 photocatalyst could produce more hydrogen compare to degussa P-25 TiO2. DRS analysis also shows that nanotube N-TiO2 was more responsive in visible light. In other hand, Pt-N-TiO2 synthesis method improvement is compulsory in order to increase Pt-N-TiO2 reponse to visible light."
Depok: Fakultas Teknik Universitas Indonesia, 2010
S51682
UI - Skripsi Open  Universitas Indonesia Library
cover
Valentina
"Telah diteliti pengaruh modifikasi fotokatalis TiO2 Degussa P-25 dalam memproduksi hidrogen dari gliserol dan air. Modifikasi yang dilakukan berupa perubahan morfologi menjadi nanotubes, pemberian dopan Pt, dopan N, dan penumbuhan fasa kristalin masing-masing melalui perlakuan hidrothermal (130oC, 12 jam), photo-assisted deposition, impregnasi dan kalsinasi 500oC selama 1 jam. Analisa SEM-EDS dan XRD menunjukkan bahwa katalis Pt-N-TiO2 nanotubes dengan tingkat kristalinitas dengan fasa anatase menyerupai TiO2 Degussa P-25. Berdasarkan uji kinerja fotokatalis di bawah sinar tampak, konsentrasi gliserol yang paling optimal adalah 50%. Morfologi nanotubes, dopan N, dopan Pt, dan dopan Pt dan N masing-masing memberikan kenaikan total produksi hidrogen sebanyak 2; 3; 11; dan 13,5 kali secara berurutan dibandingkan TiO2 Degussa P25.

The effects of modified TiO2 Degussa P-25 in hydrogen generation from water and glycerol have been observed. The photocatalyst was formed to nanotubes, doped with Pt, doped with N and crystallized each by hydrothermal treatment (130oC, 12 hours), photo-assisted deposition, impregnation, and calcination (500oC) respectively. Result of SEM-EDS and XRD show that Pt-N-TiO2 nanotubes composite crystallinity with anatase phase similar to TiO2 Degussa P-25 was successfully obtained. The effects of glycerol and water composition have also been observed under visible light resulting 50% of glycerol as the optimum concentration. Nanotubes morfology, N doped, Pt doped, and Pt-N doped catalyst increase the hydrogen production each by 2, 3, 11, and 13.5 times respectively compare to TiO2 Degussa P-25. "
Depok: Fakultas Teknik Universitas Indonesia, 2011
S895
UI - Skripsi Open  Universitas Indonesia Library
cover
Ratnawati
"[ABSTRAK
Sintesis TiO2 bermorfologi nanotube array bentuk film (TNTAs) telah dilakukan dengan proses anodisasi logam Ti dalam larutan elektrolit gliserol yang mengandung NH4F, dilanjutkan dengan annealing untuk membuat fasa kristal dari TNTAs. Optimasi berbagai parameter meliputi variasi kadar air dalam larutan elektrolit, perlakuan annealing, penambahan NaBF4, metode dan lama pengadukan serta variasi loading dan metode dalam penambahan dopan logam Pt. Hasil SEM/FESEM menunjukkan bahwa TNTAs berhasil disintesis dengan tube yang rapi, tegak lurus dan mempunyai kisaran diameter dalam antara 49-205 nm, tebal dinding 11-33 nm serta panjang 530-2577 nm. Annealing dengan H2/Ar merupakan cara yang efisien untuk memasukkan dopan C, N dan B dalam matrik TNTAs secara insitu saat anodisasi, sehingga diperoleh penurunan energi band gap sampai pada kisaran 2,20?3,10 eV. Kebanyakan TNTAs berfasa anatase dengan ukuran kristal dari 18?33 nm. TNTAs yang disintesis pada kadar air 25% volume dan annealing dengan 20% H2/Ar merupakan fotokatalis optimal yang menghasilkan kerapatan arus tertinggi. Uji TNTAs untuk memproduksi hidrogen menggunakan gliserol sebagai sacrificial agent. Penambahan 5 mM NaBF4 selama anodisasi menghasilan TNTAs termodifikasi yang mampu menghambat laju rekombinasi elektron-hole sehingga dapat meningkatkan produksi hidrogen sebesar 32 %. Penambahan dopan Pt sebagai electron trapper secara fotodeposisi pada TNTAs hasil anodisasi ultrasonik mampu menghasilkan hidrogen dari larutan gliserol sebesar lima kali lebih tinggi dibandingkan tanpa penambahan Pt.;

ABSTRACT
Synthesis of TiO2 nanotube array (TNTAs) has been performed by anodization process of Ti metal in the glycerol electrolyte solution containing NH4F followed by annealing to induce crystallization. Optimization some parameters was done including the variation of water content in the electrolyte solution, annealing atmosphere, addition of NaBF4, mode of mixing, as well as the variation of loading and the methods of Pt addition on the TNTAs. SEM/FESEM analysis showed that well ordered and vertically oriented of TNTAs with inner diameters of 49-205 nm, wall thicknesses from 11 to 33 nm and lengths from 530 to 2577 nm were synthesized. Annealing with H2/Ar is found to be an efficient method for introducing dopant C, N and B into the lattice of TNTAs via insitu anodization and, therefore, the reducing band gap in the range of 2,20?3,10 eV can be obtained. Most of TNTAs have anatase phase with the crystalline size from 18 to 33 nm. Water content of 25 v% and annealing under H2/Ar of as-synt TNTAs showed optimal condition in producing the highest photocurrent density. The photocatalytic hydrogen production test was performed with glycerol as a sacrificial agent. The addition of 5 mM NaBF4 during anodization resulted modified TNTAs that can reduce recombination of electron-hole and showed up 32 % improvement in hydrogen production. The photodeposition of Pt on the TNTAs that obtained from ultrasonic anodization can enhance hydrogen production five times higher compare to the one with unplatinized TNTAs.;Synthesis of TiO2 nanotube array (TNTAs) has been performed by anodization process of Ti metal in the glycerol electrolyte solution containing NH4F followed by annealing to induce crystallization. Optimization some parameters was done including the variation of water content in the electrolyte solution, annealing atmosphere, addition of NaBF4, mode of mixing, as well as the variation of loading and the methods of Pt addition on the TNTAs. SEM/FESEM analysis showed that well ordered and vertically oriented of TNTAs with inner diameters of 49-205 nm, wall thicknesses from 11 to 33 nm and lengths from 530 to 2577 nm were synthesized. Annealing with H2/Ar is found to be an efficient method for introducing dopant C, N and B into the lattice of TNTAs via insitu anodization and, therefore, the reducing band gap in the range of 2,20?3,10 eV can be obtained. Most of TNTAs have anatase phase with the crystalline size from 18 to 33 nm. Water content of 25 v% and annealing under H2/Ar of as-synt TNTAs showed optimal condition in producing the highest photocurrent density. The photocatalytic hydrogen production test was performed with glycerol as a sacrificial agent. The addition of 5 mM NaBF4 during anodization resulted modified TNTAs that can reduce recombination of electron-hole and showed up 32 % improvement in hydrogen production. The photodeposition of Pt on the TNTAs that obtained from ultrasonic anodization can enhance hydrogen production five times higher compare to the one with unplatinized TNTAs., Synthesis of TiO2 nanotube array (TNTAs) has been performed by anodization process of Ti metal in the glycerol electrolyte solution containing NH4F followed by annealing to induce crystallization. Optimization some parameters was done including the variation of water content in the electrolyte solution, annealing atmosphere, addition of NaBF4, mode of mixing, as well as the variation of loading and the methods of Pt addition on the TNTAs. SEM/FESEM analysis showed that well ordered and vertically oriented of TNTAs with inner diameters of 49-205 nm, wall thicknesses from 11 to 33 nm and lengths from 530 to 2577 nm were synthesized. Annealing with H2/Ar is found to be an efficient method for introducing dopant C, N and B into the lattice of TNTAs via insitu anodization and, therefore, the reducing band gap in the range of 2,20–3,10 eV can be obtained. Most of TNTAs have anatase phase with the crystalline size from 18 to 33 nm. Water content of 25 v% and annealing under H2/Ar of as-synt TNTAs showed optimal condition in producing the highest photocurrent density. The photocatalytic hydrogen production test was performed with glycerol as a sacrificial agent. The addition of 5 mM NaBF4 during anodization resulted modified TNTAs that can reduce recombination of electron-hole and showed up 32 % improvement in hydrogen production. The photodeposition of Pt on the TNTAs that obtained from ultrasonic anodization can enhance hydrogen production five times higher compare to the one with unplatinized TNTAs.]"
2015
D2057
UI - Disertasi Membership  Universitas Indonesia Library
cover
Valentina
"Telah diteliti pengaruh modifikasi fotokatalis TiC>2 Degussa P-25 dalam memproduksi hidrogen dari gliserol dan air. Modifikasi yang dilakukan antara lain perubahan morfologi menjadi nanotubes, pemberian dopan Pt dan N, masingmasing melalui perlakuan hidrothermal (130°C, 12 jam), photo-assisted deposition dan impregnasi. Analisa SEM-EDS dan XRD menunjukkan bahwa katalis Pt-N-TiC>2 nanotubes berhasil diperoleh dan memiliki fasa kristalin yang baik setelah melalui tahapan kalsinasi 500°C selama 1 jam. Pengaruh konsentrasi gliserol dan air dalam produksi hidrogen juga diamati. Diperoleh bahwa konsentrasi gliserol 50% adalah yang paling optimal. Berdasarkan pengamatan, katalis Pt-N-TiC>2 nanotubes memiliki performa yang paling baik dalam memproduksi hidrogen."
2011
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Farah Diba Toya
"Produksi hidrogen dan degradasi 2,4,6-Triklorofenol secara simultan sudah dilakukan pada berbagai fotokatalis yaitu P25-TiO2, Titania Nanotube Arrays (TNTAs), dan variasi TNTAs-CdS selama 240 menit. VariasiTNTAs-CdS menggunakanperbandingan mol dari prekursor CdS yaitu CdCl2:CH3CSNH2dengan 0,2:0,12; 0,1:0,06; dan 0,05:0,03 mol/L. Hasil karakterisasi UV-Vis DRS menunjukkanenergy band gap berkisar antara 2,71- 2,89 eV.Fotokatalis terbaik didapat pada perbandingan 0,1:0,06 (TNTAs-CdS-2) karena menghasilkan hidrogen (3,17𝜇𝜇mol/g.s) dan degradasi 2,4,6-Triklorofenol (mencapai 80%) yang paling baik dibandingkan dengan katalis lainnya. Fotokatalis tersebut menghasilkan hidrogen 1,5 kali dibandingkan TNTAs dan 7 kali dibandingkan dengan P25-TiO2. Produksi hidrogen berjalan simultan dengan pendegradasian 2,4,6-Triklorofenol, dimana kinerja keduanya bergantung pada katalis yang digunakan. Disamping itu, pengaruh konsentrasi 2,4,6-Triklorofenol (10, 20, dan 40 ppm) dipelajari dengan menggunakan fotokatalis TNTAs-CdS-2 dan menghasilkan total produksi hidrogen berturut-turut 1,008; 1,061; dan 1,197𝜇𝜇mol/g.s. Semakin besar konsentrasi 2,4,6-Triklorofenol, semakin besar pula hidrogen yang dihasilkan.

Hydrogen production and 2,4,6-Trichlorophenoldegradationhave been investigated simultanously usingP25-TiO2, TNTAs, and variation of TNTAs-CdS for 240 minutes. TNTAs-CdS variations use mol ratio of CdS precursor that isCdCl2:CH3CSNH2 with ratio 0.2:0.12, 0.1:0.06, and 0.05:0.003.Rever to UVVis analysis, the TNTAs-CdS prepared have the band gap energy in the range of 2.71-2.89 eV. Among them, the optimum composition is0.1:0.06 (TNTAs-CdS- 2) which results in the highest total hydrogen production (3,17𝜇𝜇mol/g.s) and 2,4,6-Trichlorophenol degradation(achieve 80%) compared toothers. TNTAs- CdS-2 produces total hydrogen 1.5 and 7 times compared with TNTAs and P25- TiO2, respectively.Hydrogen production and 2,4,6-Trichlorophenol degradation could be perormed simultaneously and it depands on the catalyst employed. Furthermore, the effect of2,4,6-Trichlorophenol initial concentrations (10, 20, and 40 ppm) was also studied using TNTAs-CdS-2 and produced1.008,1.061, and1.197 𝜇𝜇 mol/g.s respectively.The higherthe 2,4,6-Trichlorofenol initial concentration, the more hydrogen produced."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65372
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tania Desela
"Modifikasi TiO2 dalam bentuk nanotube arrays dengan dopan C serta pengaruhnya dalam produksi hidrogen dan listrik dalam larutan gliserol telah diinvestigasi. TiO2 nanotube arrays disintesis dari anodisasi logam titanium dalam elektrolit gliserol yang mengandung NH4F. C-TiO2 diperoleh dengan kalsinasi-reduksi TiO2 nanotube dengan gas hidrogen. Analisis SEM menunjukkan kandungan air dalam elektrolit yang menghasilkan nanotube dengan morfologi (panjang dan diameter) yang optimal adalah sebesar 25 %. Analisis UV-Vis DRS menunjukkan C-TiO2 nanotube arrays memiliki absorbansi yang besar pada jangkauan panjang gelombang sinar tampak dibanding TiO2 nanopartikel dengan band gap energy yang turun menjadi 2,6 eV. Melalui proses fotoelektrokatalisis, hidrogen mampu dihasilkan hingga 71,37 μmol.cm-2 katalis dan listrik mampu digenerasi hingga 65,65 mV.cm-2 (2,54 mA.cm-2) setelah 4 jam pengujian.

Modification of TiO2 nanotube arrays in the form of the dopant C and its influence in the production of hydrogen and electricity in a solution of glycerol has been investigated. TiO2 nanotube arrays were synthesized by anodizing titanium metal in glycerol electrolyte containing NH4F. C-TiO2 was obtained by annealing as-synthesized TiO2 nanotubes under reducing atmosphere (H2). SEM analysis showed the nanotubes morphology (length and diameter) are produced with the optimum water content of 25 %. UV-Vis DRS analysis demonstrated C-TiO2 nanotube arrays has a larger absorbance at a wavelength range of visible light than TiO2 nanoparticles with a band gap energy is down to 2.6 eV. Through photoelectrocatalysis, hydrogen could be produced up to 71.37 μmoles.cm-2 catalyst and electricity could be generated up to 65.65 mV.cm-2 (2.54 mA.cm-2) after 4 hours of testing.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43188
UI - Skripsi Open  Universitas Indonesia Library
cover
Dian Indriani
"Upaya untuk memproduksi hidrogen masih sedikit dari sumber yang terbarukan. TiO2 dalam bentuk nanotube arrays dengan dopan Boron yang disintesis dengan metode anodisasi untuk produksi hidrogen telah diinvestigasi. Perlakuan termal katalis B-TiO2 nanotube arrays (B-TNTAs) dilakukan dengan kalsinasi reduksi dengan gas hidrogen pada suhu 500oC selama 2 jam. Analisis SEM menunjukkan morfologi nanotube arrays tiap konsentrasi boron seragam. Analisis UV-Vis DRS menunjukkan B-TNTAs memiliki absorbansi yang besar pada jangkauan panjang gelombang sinar tampak dengan band gap energy yang relatif rendah yaitu menjadi 2,9 eV. Analisis XRD menunjukkan hasil 100% kristal anatase murni. Melalui proses fotokatalisis, hidrogen mampu dihasilkan hingga 48959 μmol/m2 setelah 4 jam pengujian dengan katalis 7,5 mM B-TNTAs.

Attempts to produce hydrogen is still slightly from renewable sources. TiO2 nanotube arrays in the form of boron dopants synthesized by anodizing method for hydrogen production has been investigated. Catalyst-thermal treatment of TiO2 nanotube arrays B (B-TNTAs) performed by calcination reduction with hydrogen gas at a temperature of 500oC for 2 hours. SEM analysis showed the morphology of nanotube arrays by uniform boron concentration. UV-Vis DRS analysis showed B-TNTAs has a large absorbance in the visible wavelength range with a band gap energy is relatively low, to 2.9 eV. XRD analysis produces 100% anatase crystals. Through a photocatalytic process, hydrogen is able to produce up to 48959 μmol/m2 after 4 hours of testing with catalyst 7.5 mM B-TNTAs.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S47784
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>