Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 131365 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 1999
TA3158
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhammad Ashari
"Tugas akhir ini membahas mengenai Neural Network yang diaplikasikan dalam simulasi pengendalian plant. Plant yang digunakan adalah Pressure Process Rig 38-714. Pengendali yang digunakan adalah pengendali yang bekerja dengan nilai masukan berupa nilai eror dari nilai keluaran plant yang dibandingkan dengan nilai keluaran referensi. Kesuksesan percobaan ditinjau dari seberapa bagus keluaran plant yang dipasang pengendali ketika dibandingkan dengan sinyal referensinya dan ketahanannya terhadap gangguan. Hasil percobaan menunjukkan NN dengan metode Backpropagation memberikan performa yang baik walaupun diberi gangguan dengan batasan nilai tertentu.

This project discuss about the application of Neural Network in a simulation as a controller of a plant. Pressure Process Rig 38-714 is used as the plant. Error based NN is used as the controller. The controller’s input is the error signal from the output signal of plant compared to reference signal. The success rate is viewed by the similarity of the output of plant compared to the reference signal amd their robustness against noise. The testing result shows that NN based on backpropagation method has a great performance and robustness when there is noise.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S57664
UI - Skripsi Membership  Universitas Indonesia Library
cover
Christina
"Pada tesis ini dilakukan identifikasi sistem homogenisasi dengan menggunakan algoritma neural network, sehingga dapat dijadikan model untuk mengetahui dinamika sistem yang sebenarnya. Identitikasi dengan menggunakan neural network, dilakukan dengan memanfaatkan data tanggapan sistem homogenisasi di pabrik pembuatan susu kental manis.
Dengan model hasil identitikasi ini, dapat diketahui bagaimana tanggapan sistem terhadap perubahan tekanan dengan memberikan fungsi step pada sistem lingkar terbuka. Dengan model yang ada, juga dapat diketahui bagaimana hubungan antara viskositas dan tekanan, dengan memberikan fungsi ramp pada sistem lingkar terbuka. Dari kurva hubungan antara viskositas dan tekanan, ternyata terdapat sifat non linearitas pada sistem homogenisasi.
Dengan pengetahuan tentang dinamika sistem homogenisasi, maka dapat dilakukun simulasi sistem kendali dengan menggunakan pengendali P!. Tujuan simulasi ini ialah agar dapat diketahui bagaimana karaketeristik sistem sebelum diterapkan pada sistem yang sebenarnya. Dari simulasi yang dilakukan ternyata pengendali PI cukup baik melakukan pengendalian sistem homogenisasi tersebut."
Depok: Fakultas Teknik Universitas Indonesia, 2002
T1244
UI - Tesis Membership  Universitas Indonesia Library
cover
Maulana Bisyir Azhari
"Identifikasi sistem dinamik merupakan tahapan awal dalam melakukan perancangan algoritma kendali pada suatu sistem dinamik. Namun, pada sistem dinamik yang multivariabel, tidak linier dan kopling tinggi-seperti pada misil AIM-9L Sidewinder-identifikasi sistem dinamik umumnya akan gagal dan sering terjadi simplifikasi pada sistem yang diidentifikasi, seperti dekopling dan linearisasi sistem. Pada penelitian ini, identifikasi sistem dinamik misil dilakukan dengan menggunakan algoritma artificial neural network dengan harapan karakteristik sistem dinamik tetap terjaga dengan baik. Penerbangan misil dilakukan dengan menggunakan simulator X-Plane dan akuisisi data penerbangannya dilakukan menggunakan bahasa pemrogramman python. Penerbangan dilakukan dengan sinyal referensi swept-sine dan zig-zag untuk mancakup banyak kemungkinan penerbangan misil. Hasilnya, artificial neural networks dapat melakukan pemetaan pola sistem dinamik misil dengan standardized MSE 7.155x10^(-2).

Dynamical system identification is the very first step in designing a control algorithm on a dynamic system. However, in the multivariate, nonlinear and coupled dynamical system-like the AIM-9L Sidewinder missile-dynamical system identifications are often failed and oversimplified the dynamical system, such as decoupling and linearization. In this research, system identification is done by using artificial neural networks algorithm with expectations that its characteristics will be maintained well. The missile flights are done by using the X-Plane flight simulator and the acquisition process is done by using python language. The flights use swept sine and zig-zag references to cover lots of missile flight conditions possibility. As a result, artificial neural networks can do missile dynamical pattern mapping with 7.155x10^(-2) standardized mean squared errors."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kartika Sekarsari
"Pada tesis ini dibahas tentang simulasi dan perancangan pengendalian sistem multivariabel Coupled Tank Apparatus dengan menggunakan Neural Network model Direct Invers Control. Model sistem yang bersifat non linier akan dilinierisasi sehingga diperoleh fungsi alih yang mengandung persamaan karakteristik yang menyerupai sistem linier orde dua yang berada dalam keadaan over damped akan selalu stabil. Pengurangan interaksi (kopling) yang terjadi pada sistem multivariabel Coupled Tank Apparatus dilakukan dengan perancangan dekopling yang menggunakan metode Relative Gain Matrik. Perancangan dan simulasi sistem pengendalian Neural Network model Direct Invers Control menggunakan program Matlab Versi 5.3.1. Perbandingan antara analisa tanggapan waktu terhadap sistem kendali yang dirancang dengan sistem kendali Proportional Integral Derivatif serta sistem kendali logika Fuzzy menghasilkan tanggapan respon untuk mencapai keadaan steady state (setting time) pada Neural Network model Direct Invers Control lebih cepat dibandingkan dengan tanggapan waktu yang dihasilkan oleh pengendali konvensional PI, PID, dan Fuzzy.
Dalam hal ini, data parameter sistem untuk simulasi diperoleh dari hasil penelitian dan percobaan di Laboratorium Fakultas Teknik Universitas Indonesia.

In this thesis, a study on simulation and design of a multivariabel Control of Coupled Tank Apparatus Systems is presented. A Neural Network Controller based on a Direct Invers Control is applied. The linierized model of the Coupled Tank Apparatus Systems appears to be a stable second order transfer function with an over damped characteristic. A Decoupling Compensator is designed using Relative Gain Matrix Method of Bristol. The Simulation and control is implemented using Matlab 5.3.1 on apersonal computer. For comparison a PID controller and a Fuzzy Logic Controller are also implemented. It is found that NN Direct Invers Control shows a better performance than the other control method in terms of speed response.
All data for experiment and equipment used are done in the Control Laboratory, Dept of Electrical Engineering, Faculty of Technology University of Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2002
T8480
UI - Tesis Membership  Universitas Indonesia Library
cover
Elizabeth
"Biometrik adalah salah satu teknologi cangih yang banyak dipakai untuk menjadi bagian dari sistem keamanan di berbagai bidang. Teknologi biometrik yang ada di sekitar kita ada berbagai macam seperti sistem identifikasi retina, iris mata, telapak tangan, sidik jari dan wajah. Banyak komputer atau laptop yang dilengkapi oleh kamera digital atau webcam yang terintegrasi dengan sistem yang ada di komputer itu sendiri. Teknologi camera digital semakin hari juga semakin canggih dalam pengambilan gambar yang dapat disesuaikan dengan situasi apapun contohnya seperti didalam ruangan atau diluar ruangan. Hal ini memungkinkan untuk pengaplikasian pngenalan wajah sebagai sistem autentikasi pengganti password selain fingerprint. Penelitian ini difokuskan pada perancangan aplikasi system pengenalan wajah menggabungkan dua metode yakni jaringan saraf tiruan dan metode pencocokan pola. Input dari sistem pengenalan wajah ini diambil dari webcam yang sudah melalui proses pre-processing dan sudah difokuskan ke bagian wajah dengan sistem pendeteksi wajah dengan metode pattern matching. Selain itu hasil dari pre-processing juga digunakan sebagai data training atau pelatihan. Gambar wajah hasil dari preprocessing ini kemudian masuk ke proses pengenalan menggunakan algoritma jaringan saraf tiruan. Hasil dari proses pengenalan wajah adalah berupa nama dari wajah orang yang dikenali. Sistem ini telah diuji pada lebih dari 36 sampel wajah yang diambil dari 12 orang.
Hasil akhir menunjukan bahwa sistem ini berhasil mengidentifikasi sampel-sampel wajah tersebut dengan tingkat keberhasilan mencapai 86%.

Biometric is one of the modern technology features that is used mostly as a part of security system in many types of application. There are so many biometric technology options this day such as retina identification, iris, eye, hand, finger print, and face. Many computers such as laptop are completed with digital camera or webcam which integrated with in the system computer it self. Camera technology is getting more sophisticated in nowadays in capturing image from many situations such as indoor or outdoor environmental. This technology allows the possibility to develop face recognition as an option to authentication system in computer, other than the most popular fingerprint. This final project focuses on the design of face identification application using combination of two methods, neural network method and pattern matching method. The input of the system is taken from face detection algorithm with pattern matching method on webcam images which focused on human face area and already pass preprocessing first. The digital images from preprocessing are also used as a training data. The preprocessed image is then passed into the recognition process using neural network algorithm.
The result of the recognition process is the person?s credential which in this case the name. This system has been tested over 36 samples taken from 12 people. Result show that the system has identified the samples with 86% success rate."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S51031
UI - Skripsi Open  Universitas Indonesia Library
cover
Joshua Alviando
"Penelitian ini membahas tentang perancangan sistem identifikasi pada sistem dinamik kapal Makara 03 dengan konfigurasi multi masukan dan multi keluaran. Penelitian ini merancang berbagai metode perombakan struktur Jaringan Saraf Tiruan (JST) baik metode sekuensial maupun fungsional untuk dapat menangkap dinamik yang ada pada dinamik kapal Makara 03. Metode-metode pada JST yang dibuat akan dibandingkan dengan hasil dari model matematika yaitu Transfer Function dan State Space untuk membuktikan keberhasilan dan keunggulan JST dalam membuat sistem identifikasi. Hasil dari perbandingan tersebut membuktikan semua metode yang dihasilkan pada penelitian ini mendapatkan hasil yang lebih baik dibandingkan dengan model matematika konvensional.

This research discusses the design of the identification system on the dynamic system of the Makara 03 ship with a multi-input and multi-output configuration. This study designed various structural reshuffle methods for sequensial and functional model of Artificial Neural Network (ANN) to be able to capture the dynamics of Makara 03. The methods in the ANN that were made will be compared with the results of mathematical models namely Transfer Function and State Space for prove the success and superiority of ANN in making identification systems. The results of this comparison prove that all the ANN methods produced in this study get better results compared to conventional mathematical models."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Syafieq Ridho
"Di dalam dunia industri, operasi pencampuran banyak digunakan untuk mengolah bahan mentah menjadi suatu produk seperti minyak bumi, bahan kimia, dan lainnya. Biasanya, pada plant skala industri digunakan PID kontroler sebagai sistem pengendaliannya, akan tetapi PID kontroler ini akan menjadi kurang baik ketika menghadapi sistem non-linear, sehingga pada penilitian ini dirancang suatu sistem kendali berbasis neural network yang diharapkan dapat memberikan performa yang lebih baik dan efisien dibandingkan PID konvensional. Model plant yang digunakan untuk simulasi di dalam penelitian ini adalah proses pencampuran air, dimana temperatur dan level air akan dikendalikan. Dibuat dua jenis sistem pengendali neural network (NN) dengan perbedaan pada input-nya, yaitu NN dengan input SP, PV(n), PV(n-1) dan NN dengan input SP, error, dan perubahan error. Kedua sistem pengendali neural network ini dibuat dengan menggunakan metode feed-forward neural network dan simulasinya dibuat dengan menggunakan Simulink. Berdasarkan hasil pengujian, dapat disimpulkan bahwa sistem pengendalian dengan menggunakan neural network memberikan performa yang lebih baik jika dibandingkan dengan sistem pengendalian PID konvensional, yaitu dengan settling time dan rise time yang lebih cepat, serta menghasilkan respon sistem yang tidak memiliki overshoot sama sekali.

In the industrial world, blending operations are widely used to process raw materials into products such as petroleum, chemicals, and others. Usually, in industrial-scale plants, the PID controller is used as a control system, but this controller will be less good when dealing with non-linear systems. In this study, a neural network-based control system is expected to provide better and more efficient performance compared to conventional PID control. The plant model used for simulation in this study is the process of mixing water, where the temperature and water level will be controlled. Created two types of neural network (NN) control systems with differences in the input, the first is a NN with SP, PV(n), PV(n-1) for the input, and the second is a NN with SP, error, and change of error for the input. Both of these neural network control systems are made using a feed-forward neural network method, and the simulation was created by using Simulink. Based on the test results, it can be concluded that the control system using a neural network provides better performance when compared to conventional PID control systems with a faster settling time and rise time, and produces a system response that has no overshoot at all.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Palullungan, Christopher Arel Adyatma Ruru
"

Pengawasan bawah air sangat penting untuk memantau ekosistem laut, melindungi infrastruktur kritis, dan memastikan keamanan maritim dengan pendeteksian anomali, pelacakan aktivitas bawah air, dan perlindungan area sensitif. Namun, Kendaraan Bawah Air yang Dioperasikan dari Jarak Jauh (ROV) memiliki beberapa tantangan, salah satunya adalah arus bawah air sehingga diperlukan pengendali yang kuat untuk menjaga stabilitas. Skripsi ini memodelkan hubungan antara input dari RPM motor dengan pitch rate dan yaw rate sebagai output. Model Sistem Dinamis didapat dengan menggunakan data-data yang diperoleh selama uji lapangan di salah satu kolam uji coba di kota Bandung. Sebanyak 57,788 titik data dikumpulkan selama lima menit dan diolah menggunakan aplikasi MATLAB dengan memanfaatkan jaringan neural LSTM. Hasilnya menunjukkan bahwa dari Model Sistem Dinamis pitch rate didapatkan hasil simulasi terbaik dengan hyperparameter di dua layer LSTM, 900 Hidden Units, 1700 Epochs, 100 mini-batch size, 0.001 Initial Learning Rate, 0.8 Gradient Threshold, dan rasio training : testing sebesar 55:45, Selain itu, didapatkan nilai Root Mean Square Error (RMSE) training dan testing sebesar 0.041248 dan 0.2517. Pada Model Sistem Dinamis yaw rate didapatkan hasil simulasi terbaik dengan hyperparameter di dua layer LSTM, 950 Hidden Units, 2000 Epochs, 120 mini-batch size, 0.0005 Initial Learning Rate, 0.8 Gradient Threshold, dan rasio training : testing sebesar 55:45 dengan perolehan nilai RMSE training dan testing sebesar 0.030847 dan 0.70734. Dari simulasi yang telah dilakukan, penulis berhipotesis bahwa hasil simulasi telah cukup optimal untuk  digunakan dalam pemodelan Sistem Dinamis pada Kendaraan Bawah Air yang Dioperasikan Jarak Jauh.


Underwater surveillance is crucial for monitoring marine ecosystems, protecting critical infrastructure, and ensuring maritime security through anomaly detection, underwater activity tracking, and safeguarding sensitive areas. However, Remotely Operated Underwater Vehicles (ROVs) face several challenges, including underwater currents, necessitating robust controllers to maintain stability. This thesis models the relationship between input from motor RPMs and pitch rate and yaw rate as output. The Dynamic System Model is obtained using data collected during field tests in one of the trial pools in Bandung. A total of 57,788 data points were gathered over five minutes and processed using the MATLAB application, leveraging a neural LSTM network. The results indicate that for the Dynamic System Model, the best simulation results for pitch rate were achieved with hyperparameters in a two-layer LSTM: 900 Hidden Units, 1700 Epochs, 100 mini-batch size, 0.001 Initial Learning Rate, 0.8 Gradient Threshold, and a training-to-testing ratio of 55:45. Additionally, the Root Mean Square Error (RMSE) values for training and testing were 0.041248 and 0.2517, respectively. For yaw rate, the best simulation results were obtained with hyperparameters in a two-layer LSTM: 950 Hidden Units, 2000 Epochs, 120 mini-batch size, 0.0005 Initial Learning Rate, 0.8 Gradient Threshold, and the same training-to-testing ratio. The corresponding RMSE values for yaw rate were 0.030847 (training) and 0.70734 (testing). Based on the conducted simulations, the author hypothesizes that the simulation results are sufficiently optimal for use in modelling the Dynamic System of Remotely Operated Underwater Vehicles.

"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Fillipi Rodo Tua
"Dalam dunia sekarang ini pemodelan sistem menjadi hal yang penting dalam pengembangan dunia teknologi. Berbagai cara telah dilakukan untuk membuat algoritma pemodelan sistem yang baik dan tantangan yang dihadapi pun semakin banyak. Salah satunya tantangan yang perlu dihadapi adalah adanya sistem yang kompleks. Dalam contoh praktis, penggunaan model sistem multivariabel dalam menggambarkan sistem sungguhan sudah menjadi hal yang umum untuk memenuhi tuntutan zaman. Salah satu usaha untuk dapat memodelkan sistem multivariabel adalah dengan menggunakan algoritma machine learning dengan struktur artificial neural network. Algoritma ini memiliki kemampuan untuk dapat meningkatkan performanya secara otomatis sehingga diharapkan dapat membangun pemodelan yang terbaik untuk sistem yang ingin dimodelkan secara otomatis juga sehingga dapat memudahkan kerja manusia tanpa harus membangun persamaan matematis secara manual terlebih dahulu. Studi ini ingin memelajari hasil yang didapatkan dari percobaan pemodelan sistem dinamik pesawat terbang dengan menggunakan artificial neural network dan menjadikan hasil studi tersebut bahan pengembangan lebih lanjut dalam teknologi pemodelan sistem menggunakan artificial neural network.

In the modern world, system modelling becomes an important part of technology development. Various ways have been done to create good system modelling algorithms and with that more and more challenge comes. One of the challenges that need to be faced is the existence of complex systems. For example, using multivariable system model to represent real world system is becoming common nowadays to fulfil demands. One effort to model a multivariable system is to use machine learning algorithms with artificial neural network structures. This algorithm has the capability to be able to improve its performance automatically so it is expected to build the best model parameter for the system that wants to be modelled. Also, this helps to make modelling easier for human without having to build a mathematical equation manually first. This study wanted to present the results from experimental modelling of aircraft dynamic systems by using artificial neural network and with that contribute to the development of system modelling technology using artificial neural network."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>