Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 218853 dokumen yang sesuai dengan query
cover
Dzil Mulki Heditama
"Penentuan zona rekahan reservoar di daerah Geotermal sangat penting untuk keperluan penentuan titik pemboran. Penentuan zona rekahan tersebut dapat dilakukan dengan menerapkan metode geofisika, salah satunya adalah metode microearthquake (MEQ). Metode MEQ dapat memberikan informasi yang berkaitan dengan struktur permeabilitas reservoar, pola pergerakan fluida injeksi, dan batas reservoar pada lapangan Geotermal. Terdapat beberapa metode penting yang dilakukan untuk analisis zona rekahan dari data MEQ, yaitu relokasi menggunakan metode double difference, tensor momen dan tomografi. Dalam hal ini penulis berupaya untuk melakukan penelitian pengembangan software terkait penentuan waktu tiba menggunakan spektrogram. Setelah lokasi hiposenter diperoleh, maka langkah berikutnya adalah melakukan analisis tensor momen dan tomografi. Dari berbagai analisis yang dilakukan tersebut, penentuan zona rekahan di daerah Geotermal dapat dilakukan dengan baik. Diharapkan penelitian ini memberikan hasil yang terbaik sehingga metode yang dilakukan tersebut dapat diterapkan dalam penentuan zona rekahan yang lebih tepat.

Determination of the reservoir fracture zone in Geothermal areas are very important for the purposes of determining the drilling point. Determination of the fracture zone can be performed by applying geophysical methods, one of which is a microearthquake (MEQ) method. MEQ method may provide information relating to the structure of the reservoir permeability, patterns of fluid injection movement, and boundary the field of Geothermal reservoir. There are several important methods to analyze fracture zone performed on the data MEQ, relocation using the double difference method, moment tensor and tomography. In this case the author seeks to conduct research related to the development of software such methods can be used to process and analyze the MEQ data. In this case I do research related to software development related to the timing of arrival using the spectrogram. After the location of the hypocenter is obtained, then the next step is to analyze the moment tensor and tomography. From the various analyzes performed, the determination of the fracture zone in the Geothermal area can be done well. It is expected that this study provides the best results so the methods can applied in the determination of a more precise fracture zone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T-43256
UI - Tesis Membership  Universitas Indonesia Library
cover
Fachriza Fathan
"Analisis seismik untuk mempelajari proses tektonik, kejadian gempa dan interaksi gempa membutuhkan pengetahuan yang akurat terhadap lokasi hiposenter gempa. Akurasi lokasi hiposenter dipengaruhi oleh beberapa faktor, salah satunya adalah pemahaman terhadap struktur lapisan. Pengaruh dari kekeliruan terhadap struktur kecepatan lapisan dapat dengan efektif diminimalisasi menggunakan metode relokasi double-difference. Metode tersebut bekerja dengan meminimasi nilai residu antara selisih waktu tempuh terukur dan terhitung antara dua gempa yang diasumsikan memiliki lintasan rambat gelombang yang sama dari sumber menuju suatu stasiun.
Pada penelitian ini, penulis menggunakan data sintetik yang dibuat dengan variasi model kecepatan dan data riil di suatu daerah dekat struktur patahan. Data tersebut diolah menggunakan program HYPO71 yang mengaplikasikan metode Geiger untuk mendapatkan lokasi awal hiposenter, kemudian direlokasi dengan menggunakan program buatan berbasis MATLAB (Delta-Hypo) dan program HypoDD yang mengaplikasikan metode double-difference.
Hasil pengolahan data sintetik memberikan peningkatan akurasi episentral hingga 48% dan kedalaman hingga 42%. Hal ini menunjukkan bahwa metode double-difference berhasil merelokasi hiposenter sehingga diperoleh parameter dengan akurasi yang lebih baik, sekalipun terdapat penyederhanaan pada model kecepatan yang digunakan. Hasil pengolahan data riil menunjukkan adanya kesesuaian lokasi hiposenter dengan struktur geologi dan patahan yang ada di lapangan.

Seismicity analysis for the study of tectonic processes, earthquake recurrence, and earthquake interaction requires precise knowledge of earthquake hypocenter locations. The accuracy of absolute hypocenter locations is controlled by several factors, one of which is knowledge of the crustal structure. The effects of errors in structure can be effectively minimized by using double-difference relocation methods. This method works by minimizing residual between observed and calculated differential travel time between two events which assumed had a similar ray path between the source region and a common station.
In this research, the author uses synthetic data which varies in velocity model and real data from a certain region near fault structure. These data were processed using HYPO71 program that applies Geiger method to obtain initial hypocenter locations, and then relocated using artificial MATLAB based program (Delta-Hypo) and HypoDD program that applies double-difference method.
The synthetic data processing results gives epicentral accuracy improvement up to 48% and focal-depth up to 42%, which shows that double-difference method can successfully relocate hypocenters so that parameters with better accuration are obtained, although there are simplification in velocity model used. The real data processing results shows that the hypocenter locations is appropriate with existing geological and fault structure in the field.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S-57247
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Inna Alfianinda
"Permeabilitas batuan merupakan parameter penting dalam meningkatkan drilling success ratio dan monitoring reservoir geotermal. Keberadaannya dikontrol oleh fracture akibat stress. Salah satu metode untuk menentukan keberadaan zona permeabel yang dikontrol oleh rekahan atau patahan adalah MEQ microearthquake . Identifikasi dan analisis karakteristik fracture dapat digunakan untuk mengoptimalkan produktivitas. Data gempa mikro tidak hanya memetakan sebaran zona permeabel berdasarkan sebaran hiposenternya, tetapi juga mampu mengkarakterisasi zona fracture berdasarkan analisis mekanisme fokal dan momen tensor. Dari data MEQ lapangan 'X' dengan memanfaatkan waveform lokal tiga komponen telah dilakukan inversi momen tensor. Hasil penelitian menunjukkan bahwa sebaran fracture yang mengontrol permeabilitas memiliki dominasi arah orientasi strike yakni NW-SE dan NE-SW.
Hasil analisis momen tensor menunjukkan pada lapangan bagian Utara di elevasi sekitar 1 km bsl ke atas didominasi komponen implosif, berkaitan dengan pergerakan batuan secara konvergen yang dapat berdampak pada potensi penurunan permeabilitas batuan reservoir. Lapangan bagian Utara di elevasi sekitar 1 km bsl ke bawah menunjukkan komponen-komponen eksplosif, berkaitan dengan pergerakan batuan secara divergen yang mengindikasikan distribusi permeabilitas di lapangan Utara secara keseluruhan tergolong baik. Namun tetap ada potensi dan indikasi penurunan permeabilitas karena jika pergerakan konvergen hasil komponen implosif terus terjadi akibat ekstraksi massa fluida dan tidak diimbangi dengan suplai fluida ke reservoir, maka akan berpengaruh pada sifat fisik reservoir, termasuk penurunan permeabilitas. Selain itu, hasil penelitian ini juga menunjukkan bahwa permeabilitas di zona Selatan cukup besar.

Rock permeability is an important parameter in improving drilling success ratio and monitoring of geothermal reservoir. Its existence is controlled by fracture due to stress. Identification and analysis of fracture characteristics can be used to optimize the productivity. MEQ microearthquake is a method that can be used to determine the existing of permeable zones controlled by fractures or faults. MEQ data not only map the permeable zone distribution based on its hypocenter, but also characterize the fracture zones based on analysis of focal mechanism and moment tensor. Moment tensor inversion has done using MEQ data by utilizing three components of local waveform. The results of this study indicate that the distribution of fractures that control permeability has dominant strike orientation direction ie NW SE and NE SW.
The results of moment tensor analysis show in the northern field at elevation of about 1 km bsl upward is dominated by implosive components, related to convergent rock movement which can impact on potential decrease of permeability of reservoir rock. The northern field at elevation of about 1 km bsl down show explosive components, related to diverging rock movement which indicates the distribution of permeability in the North field as a whole is quite good. However, there are potential and indication of a decrease in permeability because if convergent motion continues to occur due to fluid mass extraction and is not balanced with fluid supply to the reservoir, it will affect the physical properties of the reservoir, including the decrease in permeability. In addition, the results of this study also indicate that permeability in the South zone is considerable.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Satyaningtyas Sih Winanti
"Lokasi hiposenter gempa mikro (microearthquake) dapat dikaitkan dengan kemunculan zona lemah berupa rekahan maupun patahan. Patahan dan rekahan yang merupakan struktur seismik dapat diidentifikasikan melalui proses delineasi persebaran lokasi gempa. Dalam mendelineasi stuktur seismik diperlukan penentuan lokasi gempa dengan tingkat presisi dan akurasi yang baik. Hal umum dari analisis suatu keakuratan lokasi gempa adalah dengan menghitung ketidakpastian formal berupa kesalahan elips, waktu kejadian gempa, dan ketidaksesuaian kedalaman gempa (error ellipsoid, origin time, dan unreliability of depth). Ketidakpastian tersebut digambarkan dalam bentuk elips yang memberikan perkiraan statistik apakah suatu gempa terlokasi secara presisi yang disebut juga error ellipsoid. Salah satu faktor yang dapat mempengaruhi kesalahan penentuan lokasi gempa yaitu geometri jaringan stasiun pengamatan. Geometri stasiun pengamatan memainkan peran penting dalam membatasi ketidakpastian lokasi gempa. Penggunaan geometri jaringan stasiun pengukuran yang optimal sangat penting dan diperlukan untuk menyediakan data waktu tiba yang terpercaya. Penelitian ini bertujuan untuk mengetahui pengaruh geometri jaringan stasiun terhadap ketidakpastian lokasi gempa dalam mendelineasi struktur. Parameter seperti jumlah stasiun, jarak minimum stasiun, dan kemerataan distribusi stasiun. Berdasarkan penelitian, untuk identifikasi struktur patahan melalui delineasi sebaran gempa, maka diperlukan minimal 14 stasiun untuk memperoleh kesalahan lokasi gempa absolut (optimal) ± 1 km untuk episenter dan ± 2 km untuk kedalaman dengan catatan kualitas pengukuran waktu tiba yang baik. Jarak stasiun yang diperlukan yaitu tidak lebih dari perkiraan kedalaman fokus gempa untuk mendapatkan ketidakpastian yang lebih kecil. Distribusi stasiun yang diperlukan untuk identifikasi struktur dapat dilakukan secara acak atau menyebar untuk mendapat cakupan hiposenter yang baik. Berdasarkan penelitian data sintetik, ukuran mendapatkan volume error ellipsoid yang kurang dari 2 km pada yaitu batas azimuthal gap bernilai kurang dari 150ᵒ.

The hypocenter location of the microearthquake can be associated with the appearance of weak zones in the form of fractures or faults. Faults and fractures which are seismic structures can be identified through the delineation of the hypocenter distribution. In delineating the seismic structure, it is important to determine the hypocenter with a good level of precision and accuracy. The general information about the analysis of the accuracy of the hypocenter or earthquake location is to calculate the formal uncertainties in the form of ellipsoid error, origin time, and unreliability of depth. Error ellipsoid can describe the uncertainty in the form of an ellipse that gives a statistical calculation of whether an earthquake is precisely located or not. One of the factors that can affect the error ellipsoid in determining earthquake location is the geometry of the observation station network. The station network geometry acts as an important role to constrain the uncertainty of earthquake location. The optimal use of station network geometry is very important to provide reliable arrival time data. This study aims to determine the effect of station network geometry on the uncertainty of the earthquake location in delineating the seismic structure. Parameters such as the number of stations, minimum station distance, and station distribution uniformity. Based on the research, to identify fault structures through the delineation of earthquake distribution, it requires a minimum of 14 stations to obtain absolute (optimal) earthquake location errors ± 1 km for epicenter and ± 2 km for depth with a reliable record of the quality of arrival time. The required station distance is less than the estimated depth of the earthquake focus to get smaller uncertainties. The station distribution needed for identification of structures can be arranged randomly or uniformly to get sufficient hypocenter coverage. Based on the research of synthetic data, it gets a volume of ellipsoid error which is less than 2 km in that the azimuthal gap limit is worth less than 150ᵒ.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arif Darmawan
"Penentuan waktu tiba gelombang seismik yang akurat dan cepat adalah salah satu tantangan utama dalam berbagai aplikasi seismologi, contohnya seperti aplikasi penentuan lokasi dan relokasi sumber gempa mikro. Dalam dekade terakhir, banyak metode picking otomatis bermunculan yang bertujuan untuk mempermudah dan mempercepat proses pekerjaan penentuan waktu tiba gelombang. Dalam penelitian ini penulis berupaya untuk membuat perangkat lunak picking otomatis waktu tiba gelombang menggunakan algoritma STA-LTA dan AMPA. Hasil dari 𝑡𝑝𝑖𝑐𝑘𝑖𝑛𝑔 menjadi masukan untuk menentukan lokasi hiposenter menggunakan metode GAD. Selanjutnya dihitung pembaharuan model kecepatan 1D menggunakan velest. Hasil dari penelitian ii adalah kita dapat menganalisa tomografi kecepatan dan dapat menganalisa zona rekahan di area panasbumi.

Picking time arrival of seismic wave fastly and accurately is one of the major challenges in seismological applications, for example in finding location and relocation of microeartquake event. In the last decade, many automatic picking methods released in order to make time arrival picking easier and faster. In this thesis, a writer tried to make an automatic picking time arrival software using STALTA and AMPA algorithm. The result of 𝑡𝑝𝑖𝑐𝑘𝑖𝑛𝑔 is using as an input for GAD mothod to locate a hypocenter. Then, a new 1D velocity model is calculated using Velest. The result of this research is we can analyze a velocity tomografi and to analyze a fracture zone in panasbumi area.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T49038
UI - Tesis Membership  Universitas Indonesia Library
cover
Yazqi Mumtaz Rafifa
"Daerah penelitian “MR” adalah salah satu wilayah potensi geotermal yang berada di Ulu Slim, Malaysia dengan ditandai adanya terdapat mata air panas, mata air dingin, dan fumarol. Dengan adanya potensi tersebut, penelitian ini bertujuan untuk mengidentifikasi persebaran densitas dan mendelineasi zona permeabilitas bawah permukaan pada daerah “MR” mengintegrasikan beberapa data dan metode, yakni metode gravity, remote sensing sebagai data utama, serta data geologi, geokimia sebagai data pendukung sehingga dapat mengetahui luasan area prospek geotermal wilayah “MR” dan menentukan target pemboran sumur. Berdasarkan data gravitasi terlihat terdapat 3 indikasi patahan bawah permukaan dan divalidasi oleh data geologi pada wilayah “MR” sedangkan berdasarkan data remote sensing menunjukkan daerah yang berasosiasi dengan struktur geologi densitas tinggi terdistribusi tenggara, selatan, barat, barat laut sehingga daerah “MR” adalah daerah prospek geotermal karena memiliki permeabilitas yang baik dan dapat berperan sebagai zona resapan. Selain itu, dalam analisis terintegrasi terdapat indikasi struktur F3 dapat dikonfirmasi oleh data SVD dan FHD. Selanjutnya, diperkuat oleh adanya dua manifestasi hot spring yaitu manifestasi Ulu Slim.

The research area “MR” is one of the geothermal prospect areas in Ulu Slim Malaysia which is characterized by the occurrence of hot spring, cold spring and fumaroles. The potensial geothermal becomes the study aims to identify the distribution of density and delineate subsurface permeability zones in the "MR" area by integrating several data and methods, such as the gravity method, remote sensing are the main data, as well as geological and geochemical data are supporting data so that we can determine the area of the geothermal prospect area for the “MR” area and determines the target for drilling wells. Based on the gravity data, it can be seen that there are 3 indications of subsurface faults and validated by geological data in the "MR" area, while based on remote sensing data it shows that the areas associated with high-density geological structures are distributed southeast, south, west, northwest so that the "MR" area is an area geothermal prospects because it has good permeability and can be as an infiltration zone. Moreover, there are the integrated analysis indications that the structure of F3 can be confirmed by SVD and FHD data. Then. it is supported by the presence of two hot spring manifestations, namely the Ulu Slim manifestation."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jubelium Mamanua
"Dalam kegiatan eksplorasi geotermal umumumnya ditemukan beberapa kendala seperti membutuhkan resiko biaya investasi cukup besar, metode survei langsung yang membutuhkan waktu yang cukup lama, belum lagi resiko yang ditemui di lapangan seperti area medan, dan juga daerah geotermal yang umumnya terdapat pada area konservasi dan hutan lindung sehingga cukup menyulitkan dalam proses pengambilan data secara langsung. Untuk menjawab solusi dan permasalah tersebut maka kegiatan penelitian yang meliputi kegiatan investigasi zona permeabel pada daerah penelitian dengan pendekatan metode fault fracture density (FFD) dan pengolahan data gravitasi satelit yang umumnya berbasis remote sensing yang dapat digunakan dalam menginvestigasi zona yang memiliki permeabelitas yang tinggi dengan cara menilai area yang memiliki kepadatan struktur tinggi berdasarkan kelurusan yang terbentuk oleh aktivitas patahan ataupun rekahan. Akan tetapi, pada penerapannya tidak semua kelurusan berasal dari aktivitas yang ditimbulkan oleh patahan, sehingga perlu dilakukan pemrosesan sinyal secara digital untuk memilah dan menganalisisnya. Metode penelitian dilakukan dengan menggunakan citra satelit berupa data dari DEMNAS untuk melakukan penarikan secara manual dan data Landsat 8 untuk mendeteksi kelurusan secara otomatis dengan metode Principal Component Analysis (PCA) yang kemudian dilakukan filterisasi melalui filter konvolusi dengan menggunakan bantuan software Arcgis untuk melihat daerah dengan kepadatan tertinggi sehingga mengurangi subjektifitas dari penarikan secara manual yang kemudian dihasilkan peta Fault Fracture Density (FFD) dengan menunjukkan terdapatnya zona yang memiliki permeabilitas yang tinggi, berada pada sisi selatan gunung Karua dekat manifestasi Balla dan Cepeng. Untuk mengonfirmasi hasil yang telah didapatkan dari metode tersebut, maka metode gravitasi digunakan untuk mengonfirmasi keberadaan struktur patahan dengan data yang berasal dari citra satelit. Hasil integrasi data penginderaan jauh dan gravitasi menunjukkan zona permeabel terduga yang berada disekitaran manifestasi daerah geotermal X sebagai zona potensial reservoir.

In geothermal exploration activities, in general, several obstacles are found, such as requiring a large investment cost risk, direct survey method which takes a long time, not to mention the risks encountered in the field such as terrain areas, and also geothermal areas which are generally found in conservation areas and protected forests. making it quite difficult to process data directly. To answer these solutions and problems, research activities which include investigations of permeable zones in the research area using the fault fracture density (FFD) method approach and processing satellite gravity data which are generally based on remote sensing which can be used to investigate zones with high permeability by means of assessing areas that have high structural density based on the lineaments formed by fault or fracture activity. However, in its application, not all lineaments originate from activities caused by faults, so digital signal processing is necessary to sort and analyze them. The research method is carried out using satellite imagery in the form of data from DEMNAS to perform manual withdrawals and Landsat 8 data to detect lineaments automatically with the Principal Component Analysis (PCA) method which is then filtered through a convolution filter using the help of Arcgis software to see areas with density This reduces the subjectivity of manual withdrawal which then results in a Fault Fracture Density (FFD) map showing the presence of a zone with high permeability, located on the south side of Mount Karua near the Balla and Cepeng manifestations. To confirm the results obtained from this method, the gravity method is used to confirm the presence of the fault structure with data from satellite imagery. The results of the integration of remote sensing and gravity data show a presumed permeable zone that is around the manifestation of the X geothermal area as a potential reservoir zone."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhan
"Pemahaman kondisi reservoir merupakan salah satu aspek penting dalam aktivitas monitoring proses produksi fluida dalam sistem panas bumi. Langkah awal manajemen reservoir bagi Lapangan Panas Bumi FR yang baru berproduksi sejak tahun 2014 perlu dilakukan. Penelitian ini bertujuan mendelineasi reservoir khususnya fasa uap menggunakan metode tomografi waktu tunda. Penelitian ini menggunakan data seismogram yang diukur selama 95 hari yang direkam oleh 11 stasiun perekaman. Hasil picking waktu tiba mendapatkan 215 kejadian gempa mikro dengan minimal terekam oleh 3 stasiun perekaman. Distribusi hiposenter awal menunjukkan posisi episenter cenderung mengkluster pada sumur produksi akan tetapi dari segi kedalaman hiposenter masih terdapat fix depth pada elevasi 1170 masl, oleh sebab itu masih diperlukan proses relokasi hiposenter. Relokasi hiposenter dilakukan dengan dua metode secara kombinasi yaitu menggunakan metode Joint Hypocenter Determination (JHD) dan metode double difference. Selanjutnya dilakukan proses tomografi waktu tunda menggunakan perangkat lunak simulsp12.
Hasil distribusi relokasi hiposenter menunjukkan satu cluster di sekitar sumur produksi utama yaitu sumur B dan C. Sedangkan dari segi kedalaman hiposenter terdistribusi cluster disekitar trajectory sumur produksi B dan C dari elevasi 1000 sampai 0 masl dengan residual waktu tempuh antara 0.2 sampai 0.4 detik. Hasil tomogram menunjukkan bahwa pada elevasi sekitar 2000 sampai 1000 masl diduga sebagai zona batuan yang mengandung air dengan tingkat alterasi yang cukup besar yaitu zona clay cap dengan nilai VP/VS berkisar 1.73. Sedangkan dugaan zona uap berada pada elevasi 1000-500 masl dengan nilai VP/VS berkisar 1.67-1.7 melampar sepanjang Kawah Ciwidey dengan Kawah Putih. Selanjutnya dilakukan rekonstruksi model konseptual sederhana Lapangan Panas Bumi FR Jawa Barat dengan mengintegrasikan antara data utama penelitian yaitu tomografi microearthquake dan distribusi hiposenter yang sudah terelokasi dengan data pendukung berupa line penampang metode MT 2-D, section vertikal geologi berdasarkan data cutting sumur, profiling sumur temperatur serta lokasi sumur ekstraksi untuk memberikan arah fluida.

Understanding reservoir conditions is one of the important aspects in fluid production monitoring activity in geothermal systems. The initial step of reservoir management in the FR Geothermal Field which has only been producing since 2014 needs to be done. The object of this study to delineate the reservoir elemen especially the vapor phase using the tomography delay time method. This research used seismogram data measured for 95 days recorded by 11 seismometers. Arrivals time picking results get 215 micro earthquake events with a minimum recorded by 3 recording seismometers. The initial hypocenter distribution shows that the position of the epicenter tends to cluster in production wells but in terms of hypocenter depth there still fix depth at 1170 masl, therefore hypocenter relocation is still needed. Hypocenter relocation is done by two methods in combination. The first use Joint Hypocenter Determination (JHD) and second Double difference relocation method. Then the delay time tomography invers is using simulsp12 software.
The results of the hypocenter relocation distribution show one cluster around the main production wells that are wells B and C. While in terms of hypocenter depth distributed clusters around the trajectory of production wells B and C from elevations 1000 to 0 masl with a residual travel time of 0.2 to 0.4 seconds. The tomogram results show that at an elevation arround elevation 2000 to 1000 masl it is prediction that the zone containing water with a considerable alteration rate or usually calls of clay cap zone with a value of Vp / Vs ranging from 1.73. While the prediction steam zone is at an elevation of 1000-500 masl with a value of Vp / Vs ranging from 1.67-1.7 on the part between Ciwidey Crater and Putih Crater. The reconstruction of a simple conceptual model of West Java FR Geothermal Field by integrating the main data likes hypocenter distribution that has been relocated and microearthquake tomography with supporting data in the form of cross section MT 2-D method, geological vertical section based on well cutting data, profiling temperature wells and location of extraction wells to provide fluid direction.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Elfyandri
"Alue Calong merupakan daerah di Provinsi Nangroe Aceh Kabupaten Pidie yang memiliki area potensi geotermal disekitar zona Sesar Sumatera. Potensi geotermal di Alue Calong dibuktikan dengan ditemukanya manifestasi mata air panas di sepanjang struktur regional yang membentang dari barat laut hingga tenggara akibat dari patahan yang disebabkan oleh Sesar Sumatera. Struktur regional dan struktur lainnya yang ada di wilayah penelitian berpotensi sebagai zona permeabel. Eksplorasi keberadaan struktur sebelumnya pernah dilakukan oleh PSDMBP pada tahun 2019 menggunakan metode gravitasi dengan menganalisis secara kualitatif peta anomali Bouguer lengkap, anomali regional, anomali residual, dan anomali first horizontal derivative. Oleh sebab itu, diperlukan analisis lebih detail terkait dengan keberadaan struktur, bukan hanya secara kualitatif tetapi juga analisis secara kuantitatif. Pada penelitian ini akan mengintegrasikan data primer berupa data gravitasi satelit dari GGMplus dan data sekunder berupa data geologi, data geokimia, dan data tahanan jenis semu audio magnetotellurik dari PSDMBP untuk mengidentifikasi distribusi struktur sesar. Pengolahan data gravitasi satelit dilakukan untuk mendapatkan hasil analisis kualitatif dari peta anomali Bouguer lengkap, peta anomali regional, peta anomali residual, dan peta FHD-SVD serta analisis kuantitatif dari hasil analisis grafik nilai maksimum dan minimum FHD-SVD. Hasil analisis struktur dari data gravitasi satelit kemudian diintegrasikan dengan data geologi, geokimia, dan tahanan jenis semu untuk dibuat pemeringkatan struktur dengan metode analisis fault ranking. Semakin tinggi score yang diperoleh maka semakin banyak bukti keberadaan struktur tersebut berdasarkan data geosains yang digunakan. Hasilnya dari 9 struktur yang dianalisis, struktur regional atau F-1 memperoleh score 4 karena teridentifikasi oleh data gravitasi satelit, geologi, geokimia, dan tahanan jenis semu sehingga disimpulkan F-1 merupakan struktur paling berpotensi sebagai zona permeabel. Struktur F-2 memperoleh score 3, struktur F-4, F-5, F-6, F-7, dan F-8 memperoleh score 2. F-3 dan F-9 memperoleh Score 1 atau disimpulkan bahwa struktur F-3 dan F-9 merupakan struktur yang paling tidak berpotensi karena hanya teridentifikasi oleh data geologi.

Alue Calong is an area in Nangroe Aceh Province, Pidie district, which has a geothermal potential area around the Sumatran Fault Zone. The geothermal potential in Alue Calong is proven by the discovery of hot spring manifestations along the regional structure that stretches from the northwest to the southeast as a result of faults caused by the Sumatran Fault. Regional structures and other structures in the research area have the potential to become permeable zones. The exploration for the existence of structures was previously carried out by PSDMBP in 2019 using the gravity method by qualitatively analyzing the complete Bouguer anomaly map, regional anomalies, residual anomalies, and first horizontal derivative anomalies. Therefore, a more detailed analysis is needed related to the existence of structures, not only qualitatively but also quantitatively. This research will integrate primary data in the form of satellite gravity data from GGMplus and secondary data in the form of geological data, geochemical data, and audio magnetotelluric apparent resistivity data from PSDMBP to identify the distribution of fault structures. Satellite gravity data processing is carried out to obtain qualitative analysis results from the complete Bouguer anomaly map, regional anomaly map, residual anomaly map, and FHD-SVD maps as well as quantitative analysis from the results of the graphical analysis of the maximum and minimum FHD-SVD values. The results of structural analysis from satellite gravity data are then integrated with geological, geochemical, and apparent resistivity data to rank structures using the fault ranking analysis method. The higher the score obtained, the more evidence of the existence of the structure based on the geoscience data used. As a result of the 9 structures analyzed, the regional structure or F-1 received a score of 4 because it was identified by satellite gravity data, geology, geochemistry, and apparent resistivity, so it was concluded that F-1 was the structure with the most potential as a permeable zone. Structure F-2 gets a score of 3, structure F-4, F-5, F-6, F-7, and F-8 gets a score of 2. F-3 and F-9 get a score of 1 or it can be concluded that structure F-3 and F-9 is the least potential structure because it is only identified by geological data."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Berliana Zulny
"Daerah penelitian “M” merupakan salah satu daerah potensi panas bumi karena ditandai keterdapatan manifestasi mata air panas. Penelitian ini bertujuan untuk mengidentifikasi zona permeabel di daerah penelitian “M” sekaligus menentukan zona permeabel yang dapat direkomendasikan sebagai lokasi target pengeboran. Identifikasi zona permeabel dilakukan berdasarkan analisis korelasi antara struktur geologi permukaan dan struktur geologi bawah permukaan yang diperoleh melalui integrasi data primer berupa metode Fault Fracture Density (FFD) dan metode gravitasi. Analisis struktur geologi permukaan dilakukan berdasarkan analisis kerapatan kelurusan menggunakan metode Fault Fracture Density (FFD) yang diperoleh dengan metode ekstraksi kelurusan secara manual dan otomatis menggunakan citra DEMNAS. Analisis stuktur geologi bawah permukaan berupa struktur patahan yang mengontrol terbentuknya kerapatan kelurusan dan kemunculan manifestasi mata air panas di permukaan dilakukan berdasarkan hasil pengolahan metode gravitasi yang meliputi analisis First Horizontal Derivative (FHD), analisis Second Vertical Derivative (SVD), dan analisis Euler Deconvolution (ED). Adanya zona permeabilitas tinggi hingga sangat tinggi dan kontras anomali SVD di lokasi yang sama mengindikasikan zona permeabel dihasilkan dari struktur geologi permukaan dan struktur geologi bawah permukaan yang berkorelasi baik. Sementara itu, zona permeabel yang direkomendasikan sebagai lokasi target pengeboran ditentukan berdasarkan integrasi data primer dan data sekunder (data geologi, data geokimia, dan metode magnetotellurik). Berdasarkan analisis terpadu FFD, zona permeabel daerah penelitian “M" berada di enam wilayah, yaitu di bagian tengah hingga ke barat laut, timur laut, barat daya, selatan, dan tenggara hingga ke timur. Namun, berdasarkan analisis integrasi data gravitasi dan metode FFD, zona permeabel yang terbentuk dari struktur permukaan dan struktur patahan bawah permukaan yang berkorelasi baik berada di bagian tengah, barat laut, utara, timur laut, dan selatan. Berdasarkan analisis terpadu FFD serta analisis integrasi data gravitasi dan metode FFD, zona permeabel yang dapat direkomendasikan sebagai lokasi target pengeboran terletak pada daerah sebaran manifestasi di zona graben dan di sekitar manifestasi APDM-6 di zona horst. Namun, berdasarkan analisis integrasi data primer dan data sekunder, zona permeabel yang dapat direkomendasikan sebagai lokasi target pengeboran utama mengerucut pada zona upflow atau tepatnya di sekitar manifestasi APDM-1, APDM-2, APDM-3, dan APDM-5 yang terletak di zona graben dan di sekitar gunung DTR karena terdapat parameter target pengeboran yang lebih mendukung baik dari data primer maupun data sekunder.

The research area "M" is one of the geothermal potential areas because it is characterized by the manifestation was found as hot springs. This research aims to identify permeable zones in the "M" research area and to determine permeable zones that can be recommended as drilling target location. Permeable zones are identified based on correlation analysis between surface geological structures and subsurface geological structures which is obtained using primary data integration between the Fault Fracture Density (FFD) method and the gravity method. Analysis of the surface geological structure is carried out based on lineament density analysis using the Fault Fracture Density (FFD) method which is obtained using manual and automatic lineament extraction methods using DEMNAS imagery. Analysis of subsurface geological structures in the form of fault structures controlling the emergence of density lineaments and hot springs on the surface is carried out based on the results of gravity method processing consisting of First Horizontal Derivative (FHD) analysis, Second Vertical Derivative (SVD) analysis, and Euler Deconvolution (ED) analysis. The existence of high to very high permeability zones and contrasting SVD anomalies at the same location indicate that the permeable zone is the result of well-correlated surface geological structures and subsurface geological structures. Meanwhile, the permeable zone recommended as a drilling target location is determined based on the integration of primary data and secondary data (geological data, geochemical data, and magnetotelluric methods). Based on the integrated FFD analysis, the permeable zone of the "M" research area is located in six regions, i.e., in the central part to the northwest, northeast, southwest, south, and southeast to the east. However, based on the integration analysis of gravity and FFD data, The permeable zones formed from well-correlated surface structures and subsurface fault structures are in the central, northwest, north, northeast and south parts.. Based on the integrated analysis of FFD and also the integration analysis of gravity data and FFD method, the permeable zone that can be recommended as a drilling target location is located in the manifestation distribution area in the graben zone and around the APDM-6 manifestation in the horst zone. However, based on the integration analysis of primary data and secondary data, the permeable zone that can be recommended as the main drilling target location is narrowed in the upflow zone or precisely around the manifestation of the APDM-1, APDM-2, APDM-3 and APDM-5 hot springs located in the graben zone and around the DTR mountain because there are drilling target parameters that are more supportive of both primary and secondary data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>