Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 165094 dokumen yang sesuai dengan query
cover
Muhammad Rizki
"Penelitian ini terdiri dari dua tahap. Growing self-organizing map (GSOM) algorithm dan hybrid bee colony optimization (BCO) dan self-organizing map (SOM) untuk mengimprove SOM performance. Pada tahap pertama GSOM digunakan untuk menentukan SOM topology dan pada tahap kedua, hybrid BCOSOM digunakan untuk mengadjust SOM weights. Metode BCOSOM akan dibandingkan dengan metode PSO, BCO, SOM, PSOSOM, SOM+PSO, dan SOM+BCO dengan menggunakan 4 benchmark data sets (Iriss, Glass, Wine, dan Vowel). Dari hasil komputasi menunjukkan bahwa metode BCOSOM dapat mencari solusi yang lebih baik dari algoritma lainnya. Dari hasil tersebut, BCOSOM digunakan pada Group Technology untuk menentukan part families pada komponen plat disebuah perusahaan medical furniture di Yogyakarta.

This research proposes a two stage method growing self organizing map GSOM algorithm and bee colony optimization BCO based self organizing map BSOSOM to improve SOM performance. In the first stage GSOM is used to determine the SOM topology and then followed by BCOSOM to fine tune the SOM weights. The proposed BCOSOM algorithm is compared with other algorithms PSO BCO SOM PSOSOM SOM PSO and SOM BCO using four benchmark data sets Iris Glass Wine and Vowel. The computational result indicates that BCOSOM algorithm is able to find a better solution than other algorithms. Furthermore, the proposed algorithm has been also employed to Group Technology to cluster components into part families for a medical manufacture in Indonesia.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T43172
UI - Tesis Membership  Universitas Indonesia Library
cover
Thasya Dwiayu Maydina
"Optimisasi portofolio adalah masalah fundamental pada lingkungan keuangan, dimana investor membentuk portofolio yang sesuai dengan yang diharapkan dengan mendapatkan return optimal dan risiko minimal. Pada skripsi ini, membahas masalah optimisasi portofolio dengan kendala di bidang keuangan seperti biaya transaksi, kardinalitas, dan kuantitas dibawah asumsi bahwa return dari aset berisiko adalah bilangan fuzzy. Karena hal tersebut, digunakan model optimisasi portofolio yaitu, mixed integer model nonlinear programming problem. Pertama, data saham di diversifikasi berdasarkan 7 skor rasio finansial EPS, PER, PEG, ROE, DER, Current Ratio dan Profit Margin dengan Agglomerative Clustering untuk menghasikan klaster yang homogen berdasarkan risiko. Selanjutnya, setiap klaster dicari proporsi dalam portofolio dengan menggunakan algoritme heuristik yaitu modified artificial bee colony MABC algorithm, dimana pada algoritme tersebut terdapat proses inisialisasi populasi yang dibangun berdasarkan pendekatan chaotic initialization. Pada akhirnya, return yang dihasilkan dibandingkan dengan S P 500 index return 12,34 dan Sharpe ratio 2,7 . Hasil dari performa Agglomerative Clustering Modified Artificial Bee Colony Algoritm yang dievaluasi menggunakan data aktual, menghasilkan nilai tertinggi dari rata-rata return sebesar 29,96 dan Sharpe ratio sebesar 17,562.

Portfolio optimization problem is a fundamental matter in the financial environment, where the investors form a satisfactory portfolio by obtaining optimal return and minimal risk. In this undergraduate thesis, we discuss the portfolio optimization problem with real world constraints such as transaction costs, cardinality, and quantity under the assumption that the returns of risky assets are fuzzy numbers. Thus, a mixed integer model nonlinear programming problem is discussed. At first, stock data is diversified based on their financial ratio scores the scores of EPS, PER, PEG, ROE, DER, Current Ratio and Profit Margin by using agglomerative clustering to produce a homogeneous cluster. Next, weight of each stock in the stock portfolio are determined using a modified artificial bee colony MABC algorithm, where in the algorithm there is a process of chaotic initialization approach. Finally, the obtained return will be compared to both the S P 500 index return 12,34 and Sharpe ratio 2,7. The results form the performance of Modified Artificial Bee Colony Algoritm with Agglomerative Clustering in portfolio optimization, evaluated based on some actual dataset show that the higher level of return is 29,96 and Sharpe ratio is 17,562."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shaffa Mutia Zahra
"Kereta listrik adalah salah satu mode transportasi yang paling banyak digunakan oleh masyarakat Indonesia. Selain biayanya yang ekonomis, kereta listrik dapat mengantarkan penggunanya ke tujuan dengan lebih cepat dibandingkan kendaran lain seperti mobil atau motor yang rentan terjebak kemacetan lalu lintas. Mengingat kebergantungan masyarakat yang cukup besar terhadap kereta lisrik, maka dibutuhkan penelitian lebih lanjut untuk meningkatkan tingkat efisiensinya. Salah satu bentuk peningkatan efisiensi adalah dengan mengurangi nilai energi yang dihabiskan oleh kereta listrik saat beroperasi. Pengoptimalan kereta listrik dalam segi konsumsi energi dapat dilakukan dengan bantuan algoritma Artificial Bee Colony (ABC). Algoritma ABC adalah algoritma yang meniru perilaku koloni lebah madu dalam mencari solusi. Skripsi ini menunjukkan hasil pengaplikasian algoritma ABC dalam menemukan solusi berupa nilai konsumsi energi terkecil.

An electric train is one of the most widely used modes of transportation used by Indonesians. Aside from being economical, an electric train can take their users to their destinations quicker than vehicles such as cars or motorbikes which are prone to getting stuck in traffic jams. Given how dependent the community is on electric trains, further research is needed to increase the level of efficiency. One form of increasing the efficiency of an electric train is to reduce the value of the energy consumed by the electric train while operating. Optimizing electric trains in terms of energy consumption can be done with the help of the Artificial Bee Colony (ABC) algorithm. The ABC algorithm is an algorithm that mimics the behavior of honeybee colonies in finding solutions. This thesis shows the results of applying the ABC algorithm in finding a solution in the form of the smallest energy consumption value."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Yan
"Masalah optimisasi portofolio adalah masalah untuk mencari portofolio dengan return maksimal dan risiko minimal. Pada skripsi ini, digunakan model optimisasi portofolio multi objektif. Algoritma Multi-objective Co-variance based Artificial Bee Colony M-CABC digunakan untuk menyelesaikan masalah optimisasi portofolio. Algoritma M-CABC merupakan pengembangan dari algoritma Artificial Bee Colony ABC menggunakan konsep kovariansi statistik dan dipakai untuk masalah optimisasi portofolio. Implementasi dilakukan dengan menggunakan lima sampel data OR-Lib; port1, port2, port3, port4, dan port5. Hasil yang didapat dibandingkan dengan unconstrained efficient frontier dari lima sampel data. Dari hasil simulasi, Algoritma M-CABC menghasilkan solusi yang cukup dekat dengan solusi pada unconstrained efficient frontier.

Portfolio optimization problem is a problem to find portfolio with maximum return and minimum risk. In this skripsi, multi objective portfolio optimization model is used. Multi objective Co variance based Artificial Bee Colony M CABC algorithm is used to solve porto folio optimization problem. M CABC algorithm is developed from Artificial Bee Colony ABC algorithm using statistical co variance concept and is used for portfolio optimization problem. Implementation is done using five OR Lib data samples port1, port2, port3, port4, dan port5. Obtained results is compared with unconstrained efficient frontier of five data samples. From simulation results, M CABC algorithm gives solutions that is near solutions on the unconstrained efficient frontier."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 2001
TA2573
UI - Tugas Akhir  Universitas Indonesia Library
cover
Andre Sugioko
"Penjadwalan job shop dengan kriteria biaya keterlambatan merupakan permasalahan yang jarang digunakan dalam penelitian job shop. Umumnya penjadwalan job shop diselesaikan dengan menggunakan metode metaheuristik, salah satu metode metaheuristik yang populer dibicarakan adalah algoritma Bee Colony. Algoritma Bee Colony merupakan algoritma yang tidak memiliki metode untuk lepas dari local optimum, seperti yang dinyatakan pada penelitian Chong (Chong, et al. 2005), maka penelitian ini akan melakukan modifikasi terhadap algoritma Bee Colony dengan menggunakan tabu list, untuk meningkatkan perfroma pencarian solusi dan waktu komputasi untuk permasalahan penjadwalan job shop dengan kriteria biaya keterlambatan.
Hasil penelitian menunjukan bahwa algoritma Bee colony-Tabu memberikan perfroma yang serupa untuk kriteria biaya keterlambatan dan waktu komputasi terhadap algoritma Tabu Search dan lebih baik daripada algoritma Bee Colony dan Differentialial Evolution untuk kriteria biaya keterlambatan. Sedangkan untuk waktu komputasi algoritma Bee colony dengan Tabu List lebih unggul daripada algoritma Tabu Search dan Bee Colony, namun waktu komputasi algoritma Differentialial Evolution lebih unggul daripada algoritma Bee colony-Tabu, Tabu Search dan Bee Colony.

Job shop scheduling with tardiness cost is a problem that rarely exist in paper research. Generally, job shop scheduling solved using metaheuristik method, one of metaheuristik methods popular discussed in many paper are Bee Colony algorithm. Bee Colony Algorithm is an algorithm that does not have a method to escape from local optimum, as stated in the Chong?s research (Chong, et al. 2005), because of that this research will make modifications to the Bee Colony algorithm using the taboo list, to improve searching solution and computing time for job shop scheduling problems with late fees criteria.
The results showed that the Bee colony-Tabu algorithm gives perfromance similar to the Tabu Search algorithm and better than Bee Colony algorithm for late fees criteria and computation time, and Differentialial Evolution for the criteria for late fees. As for computational time Bee colony with Tabu List algorithm is superior to Tabu Search algorithm and the Bee Colony, but the computing time algorithm Differentialial Evolution algorithm is superior to Bee Colony-Tabu, Tabu Search and Bee Colony.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T30052
UI - Tesis Open  Universitas Indonesia Library
cover
Rissa Suherdini
"ABSTRAK
Vehicle Routing Problem (VRP) merupakan masalah kritis dan penting dalam bidang logistik untuk mendesain suatu jaringan transportasi yang efektif dan efisien. Di antara berbagai jenis VRP, Capacitated Vehicle Routing Problem (CVRP) telah banyak dipelajari secara luas oleh banyak peneliti karena dalam prakteknya sangat relevan dengan operasi logistik. Namun, CVRP yang bertujuan meminimalkan perjalanan jarak keseluruhan atau meminimalkan waktu perjalanan ternyata tidak memenuhi persyaratan terbaru yaitu Green Logistics, yang memperhatikan pengaruh terhadap lingkungan. Pada skripsi ini mempelajari CVRP dari perspektif lingkungan yang disebut Environmental Vehicle Routing Problem (EVRP) dengan tujuan mengurangi dampak buruk pada lingkungan yang disebabkan oleh routing dari kendaraan. Dalam skripsi ini, pengaruh lingkungan diukur melalui jumlah emisi yang dikeluarkan pada saat melakukan aktifitas logistik. Salah satu teknik yang dapat digunakan untuk menyelesaikan masalah EVRP adalah dengan menggunakan metode metaheuristik yaitu algoritma Hybrid Artificial Bee Colony (HABC). Algoritma HABC merupakan modifikasi dari algoritma Artificial Bee Colony (ABC) dengan algoritma Clarke-Wright Savings untuk pembentukan rute awal.

ABSTRACT
The vehicle routing problem (VRP) is a critical and vital problem in logistics for the design of an effective and efficient transportation network. Among the various types of VRP, Capacitated Vehicle Routing Problem (CVRP) has been studied extensively because in practice it is very relevant to logistics operations. However, CVRP aimed at minimizing traveling distance or minimize overall travel time did not meet the latest requirements of Green Logistics, which pay attention to the effect on the environment. In this thesis studied the CVRP from an environmental perspective, called the Environmental Vehicle Routing Problem (EVRP) with the aim of reducing the adverse effect on the environment caused by the routing of vehicles. In this research, the environmental influence is measured through the amount of the emission , which is a widely acknowledged criteria and accounts for the major influence on environment. A hybrid artificial bee colony algorithm (HABC) is designed to solve the EVRP model. The artificial bee colony is a swarm intelligent, which mimics the foraging behavior of a honey bee swarm. An hybrid artificial bee colony algorithm is also proposed to improve the solution quality of the original version. HABC algorithm is a modification of the algorithm Artificial Bee Colony (ABC) algorithm Clarke-Wright Savings as the formation of the initial route.
"
Universitas Indonesia, 2016
S62595
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reza Ilham
"Guna mempersiapkan kebutuhan yang terencana dan tidak terencana di masa depan, perlu adanya investasi sejak dini. Dalam berinvestasi, seorang investor dihadapkan pada permasalahan dalam menentukan jumlah aset yang optimal dan proporsi modal pada masing-masing aset dalam menyusun portofolio investasinya. Masalah ini adalah masalah pengoptimalan portofolio. Dalam menyusun portofolio perlu dilakukan diversifikasi yaitu menggabungkan aset dengan karakteristik yang berbeda untuk mengurangi risiko investasi. Clustering dapat digunakan sebagai strategi diversifikasi. Tujuan dari penelitian ini adalah untuk mengetahui strategi diversifikasi aset dalam portofolio dengan metode clustering Density Based Spatial Clustering of Applications with Noise (DBSCAN) dan memilih aset serta menentukan proporsi modal yang optimal pada setiap portofolio aset penyusun portofolio dengan Multi- objektif algoritma metaheurysitic Co-variance. Berbasis Artificial Bee Colony (M-CABC). DBSCAN adalah algoritma clustering berbasis kepadatan cluster yang dirancang untuk membentuk cluster dan menemukan noise dalam data. Algoritma M-CABC merupakan pengembangan dari algoritma Artificial Bee Colony (ABC) dengan menambahkan konsep statistic covariance untuk mempercepat konvergensi. Aset yang digunakan dalam penelitian ini adalah saham. Kami menggunakan lima data portfolio saham dengan persentase saham yang memiliki mean return negatif untuk setiap data yang berbeda. Implementasi dilakukan dalam tiga kasus metode yang berbeda: optimalisasi portofolio saham tanpa DBSCAN, optimalisasi portofolio saham dengan DBSCAN tanpa noise, dan optimalisasi portofolio saham dengan DBSCAN dengan noise. Hasilnya adalah besarnya persentase saham yang memiliki mean return pada data negatif berpengaruh terhadap pemilihan metode yang digunakan untuk memperoleh portofolio dengan risiko terkecil.

In order to prepare for planned and unplanned needs in the future, it is necessary to invest from an early age. In investing, an investor is faced with problems in determining the optimal amount of assets and the proportion of capital in each asset in compiling his investment portfolio. This issue is a portfolio optimization problem. In compiling a portfolio, it is necessary to diversify, namely combining assets with different characteristics to reduce investment risk. Clustering can be used as a diversification strategy. The purpose of this study is to determine the diversification strategy of assets in portfolios with the Density Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method and to select assets and determine the optimal proportion of capital in each portfolio compiler portfolio assets with the Multi-objective Co-variance metaheurysitic algorithm. . Based on Artificial Bee Colony (M-CABC). DBSCAN is a cluster density based clustering algorithm designed to form clusters and find noise in data. The M-CABC algorithm is a development of the Artificial Bee Colony (ABC) algorithm by adding the concept of statistical covariance to accelerate convergence. The assets used in this study are stocks. We use five stock portfolio data with the percentage of stocks that have a negative mean return for each of the different data. The implementation is carried out in three cases with different methods: optimization of stock portfolios without DBSCAN, optimizing stock portfolios with DBSCAN without noise, and optimizing stock portfolios with DBSCAN with noise. The result is the large percentage of stocks that have a mean return on negative data that affects the choice of the method used to obtain the portfolio with the smallest risk."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abyan Pras Sahala
"Dalam berinvestasi, investor menginginkan portofolio optimal yang menghasilkan return tinggi dengan risiko yang rendah. Terdapat berbagai model optimisasi portofolio, salah satunya adalah model Mean-Variance (MV). Metode ini meminimalkan variansi portofolio yang merepresentasikan risiko dari sebuah investasi. Dalam menyelesaikan permasalahan optimisasi portofolio dapat digunakan metode heuristik, salah satunya adalah Artificial Bee Colony. Metode ini terinspirasi dari pergerakan koloni lebah madu dalam mencari makanan. Pada skripsi ini dibahas model optimisasi portofolio Cardinality-constrained Mean-variance(CCMV) yang memodifikasi model MV dengan menambahkan kendala kardinalitas, kendala kuantitas, serta parameter tingkat toleransi risiko investor. Untuk menyelesaikan masalah optimisasi portofolio menggunakan model CCMV, digunakan metode heuristik Improved Quick Artificial Bee Colony (iqABC) yang merupakan perkembangan metode ABC. Penggunaan metode iqABC dengan model CCMV menghasilkan portofolio dengan rata-rata return dan nilai sharpe ratio yang lebih baik dibandingkan dengan pasar.

In Investing, investor wants an optimal portfolio that generates high return with low risk. There are many portfolio optimization models, one of them is Mean-Variance (MV) model. This model minimizes the portfolio variances that represents the risk in investment. The Artificial Bee Colony (ABC) is an heuristic method to solve the portfolio optimization problems. This method inspired by the movement of honey bee colony when searching for foods. In this study, the Cardinality-constrained Mean-Variance (CCMV) model & Improved Quick Artificial Bee Colony (iqABC) method are used. In this case, the CCMV model is the modification of the MV model by adding the cardinality constraint, quantity constraints, and the investor risk tolerance parameter. Meanwhile, the iqABC method is the development of the ABC method. The used of iqABC method on CCMV model generates a portfolio that gives better returns and sharpe ratio compared to the market."
Depok: Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>