Ditemukan 12336 dokumen yang sesuai dengan query
Dongen, M.R.C. van
"This book teaches all the ins and outs of LaTeX which are needed to write an article, report, thesis, or book. The book teaches by example, giving many worked out examples showing input and output side by side. The book presents the most recent techniques for presenting data plots, complex graphics, and computer presentations, but does not require previous knowledge. "
Berlin: Springer-Verlag, 2012
e20407978
eBooks Universitas Indonesia Library
Griffiths, David Francis
"
Why do you need to learn LATEX? LATEX has become an extremely popular typesetting system and is widely used throughout the sciences. As a student you may need to typeset reports and theses in LATEX (particularly if you are a graduate student in any mathematics or computer science discipline). Or you may be someone who had planned to "eventually" get around to learing LATEX, but you are still using older systems and methods of typesetting. Procrastinate no more! The authors have elected to cover LATEX 2e, the latest standard version at the time of publication. The old and new versions are very similar and it is clear that the LATEX 2e will soon dominate. An appendix discusses the differences between 2e and the older version 2.09."
Philadelphia : Society for Industrial and Applied Mathematics, 1997
e20443101
eBooks Universitas Indonesia Library
Muthia Szami Naffisah
"Peningkatan data digital mendorong peningkatan kebutuhan teknik penggalian informasi. Media sosial merupakan salah satu penghasil data digital dalam jumlah besar, berupa aspirasi masyarakat mengenai apa yang terjadi di sekitar mereka. Maka dari itu, penelitian ini menganalisis respon masyarakat melalui akun twitter mengenai harga bahan pokok dan mengklasifikasikan respon tersebut menjadi dua kelompok; respon positif dan negatif. Penelitian ini menggunakan metode text mining, sedangkan asosiasi jenis bahan pokok dengan sentimen respon diukur menggunakan uji Chi Square dan Prosedur Marascuillo. Hasil penelitian menunjukkan bahwa Harga Susu, Harga Telur dan Harga Bawang Merah berasosiasi paling signifikan terhadap munculnya sentimen negatif dibandingkan komoditas lain.
The increase number of digital data pushes the needs of techniques in mining the information. Social media creates a large pool of data consisting of people’s aspiration on what happen around them. Therefore, this research analyzes people’s responses through their twitter account on staple food prices and classify them into sentiment classes; positive and negative. Research is done using text mining and the association between types of staple foods and sentiments is analyzed using Chi Square Test and Marascuillo Procedure. The result reveals Milk price, Egg Price and Red Onion price associate with negative sentiment tweets most significantly than others."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56032
UI - Skripsi Membership Universitas Indonesia Library
Nicholas Pangestu
"Panjangnya suatu berita terkadang mengurangi minat seseorang untuk membaca berita, hal ini dapat kita lihat dari banyaknya istilah “tl:dr” pada thread di internet. Peringkasan dokumen dapat menciptkan ringkasan berita dan mengurangi waktu yang dibutuhkan untuk membaca. Salah satu cara yang dapat digunakan untuk melakukan peringkasan dokumen adalah menggunakan algoritma Textrank. Pada penelitian ini akan diimplementasikan word embedding untuk membantu algoritma Textrank memahami makna suatu kata dengan lebih baik. Hasil yang didapatkan menunjukkan bahwa penggunaan word embedding meningkatkan performa dari algoritma Textrank hingga 13% pada ROUGE-1 dan hingga 21% pada ROUGE-2. Model word embedding BERT memiliki performa tertinggi jika dibandingkan dengan word2vec (3% lebih tinggi pada ROUGE-1 dan 7% lebih tinggi pada ROUGE-2) dan fasttext (5% lebih tinggi pada ROUGE-1 dan 10% lebih tinggi pada ROUGE-2). Pada penelitian ini juga mengimplementasikan pembobotan TF-IDF dalam membuat sebuah representasi suatu kata. Hasil yang didapatkan menunjukkan bahwa pembobotan TF-IDF dapat meningkatkan performa dari tiap model word embedding yang digunakan hingga 11% pada ROUGE-1 dan hingga 19% pada ROUGE-2 dibandingkan performa tanpa pembobotan TF-IDF.
The length of article news sometimes reduces one's interest in reading the news, we can see this from the many terms "tl:dr" in threads on the internet. Document summarization can create news summaries and reduce the time it takes to read. One way to do document summarization is to use the Textrank algorithm. In this research, word embedding will be implemented to help the Textrank algorithm understand the meaning of a word better. The results show that the use of word embedding improves the performance of the Textrank algorithm up to 13% in ROUGE-1 and up to 21% in ROUGE-2. BERT word embedding model has the highest performance when compared to word2vec (3% higher in ROUGE-1 and 7% higher in ROUGE-2) and fasttext (5% higher in ROUGE-1 and 10% higher in ROUGE-2). This study also implements TF-IDF weighting to make a word representation. The results show that TF-IDF weighting can improve the performance of each word embedding model used up to 11% in ROUGE-1 and 19% in ROUGE-2 compared to the performance without using TF-IDF."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ajmal Kurnia
"Code-mixing adalah sebuah fenomena pengunaan dua atau lebih bahasa dalam suatu percakapan. Fenomena ini semakin banyak digunakan oleh pengguna internet Indonesia yang mencampur bahasa Indonesia-Inggris. Normalisasi teks code-mixed ke dalam satu bahasa perlu dilakukan agar kata-kata yang ditulis dalam bahasa lain dalam teks tersebut dapat diproses dengan efektif dan efisien. Penelitian ini melakukan normalisasi teks code-mixed pada bahasa Indonesia-Inggris dengan menerjemahkan teks ke dalam bahasa Indonesia. Penulis melakukan pengembangan pada pipeline normalisasi code-mixed dari penelitian sebelumnya sebagai berikut: melakukan rekayasa fitur pada proses identifikasi bahasa, menggunakan kombinasi ruleset dan penerjemahan mesin pada proses normalisasi slang, dan menambahkan konteks pada proses Matrix Language Frame (MLF) pada proses penerjemahan. Hasil eksperimen menunjukkan bahwa model identifikasi bahasa yang dibuat dapat meningkatkan nilai F1-score 4,26%. Model normalisasi slang yang dibuat meningkatkan nilai BLEU hingga 25,22% lebih tinggi dan menunrunkan nilai WER 62,49%. Terakhir, proses penerjemahan yang dilakukan pada penelitian ini berhasil memperoleh nilai BLEU 2,5% lebih tinggi dan metrik WER 8,84% lebih rendah dibandingkan dengan baseline. Hasil ini sejalan dengan hasil eksperimen keseluruhan pipeline. Berdasarkan hasil eksperimen keseluruhan pipeline yang dibuat oleh penulis dapat meningkatkan secara signifikan performa BLEU hingga 32,11% dan menurunkan nilai WER hingga 33,82% lebih rendah dibandingkan dengan metode baseline. Selanjutnya, penelitian ini juga menganalisis pengaruh dari proses normalisasi teks code-mixed untuk klasifikasi emosi. Proses normalisasi teks code-mixed terbukti dapat meningkatkan performa sistem klasifikasi emosi hingga 12,45% untuk nilai F1-score dibandingkan dengan hanya melakukan tokenisasi dan meningkatkan nilai F1-score hingga 6,24% dibandingkan dengan metode preproses sederhana yang umum digunakan. Hal ini menunjukkan bahwa normalisasi teks code-mixed memiliki pengaruh positif terhadap efektifitas pemrosesan teks, sehingga normalisasi ini penting untuk dilakukan pada task yang menggunakan data code-mixed.
Code-mixing is the mixing of two or more languages in a conversation. The usage of code-mixing has increased in recent years among Indonesian internet users that often mixed Indonesian language with English. Normalization of code-mixed text has to be applied to translate code-mixed text so that the text can be processed effectively and efficiently. This research performed code-mixed text normalization on Indonesian-English text by translating the text to Indonesian language. Author improves existing normalization pipeline from previous research by: (1) feature engineering on language identification, (2) using combination of ruleset and machine translation approach on slang normalization, and (3) adding some context on matrix language frame that used on translation process. Experiment result shows language identification model that developed in this research is able to improve F1-score by 4,26%. Slang normalization model from this research is able to improve BLEU score by 25,22% and lower WER score by 62,49%. Lastly, translation process on this research is able to improve BLEU score by 2,5% and lower WER score by 8,84% compared to baseline. Experiment results on the entire normalization pipeline shows similar results. The result shows the new pipeline is able to significantly improves previous pipeline by 32,11% on BLEU metric and reduces WER by 33,82% compared to baseline normalization system. This research also tried to analyze the effect of code-mixed text normalization process on emotion classification. Code-mixed text normalization is able to improve evaluation result of emotion classification model by 12,45% on F1-score compared to tokenization only preprocessing data and 6,24% compared to common text preprocessing method. This result shows that the code-mixed text normalization has positive effect to text processing and also shows the importance to perform this normalization when using code-mixed data."
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership Universitas Indonesia Library
Jonathan Amadeus Hartman
"Aksara Pegon merupakan aksara Arab yang dimodifikasi untuk menulis bahasa Jawa, Sunda, dan Madura. Koleksi manuskrip aksara ini telah tersebar di seluruh Indonesia dan mancanegara, tetapi sayangnya belum ada platform digital yang dapat menyatukan koleksi-koleksi berharga tersebut. Salah satu jenis platform yang cocok digunakan untuk memuat metadata manuskrip secara lengkap dan mendukung kontribusi manuskrip dari pengguna adalah document management system (DMS). Oleh sebab itu, penelitian ini bertujuan untuk mengembangkan DMS untuk manuskrip Pegon yang dapat digunakan oleh para kolektor, santri, dan orang awam. Penelitian ini menggunakan metode requirement gathering untuk memahami kebutuhan pengguna terhadap DMS Pegon. Wawancara dengan calon pengguna dan benchmarking dengan aplikasi DMS lain dilakukan untuk membuat rancangan fitur dan antarmuka aplikasi. Hasil evaluasi rancangan fitur menunjukkan bahwa fitur-fitur yang akan diimplementasikan telah memenuhi kebutuhan calon pengguna. Lalu, hasil requirement gathering dijadikan dasar penyusunan product backlog item (PBI), pemilihan teknologi, dan rancangan arsitektur DMS Pegon. Proses pengembangan dilakukan dalam dua tahap, backend dan frontend dengan menerapkan metode Kanban. Implementasi DMS Pegon menggunakan arsitektur yang terkontainerisasi dalam Docker, meliputi Next.js, Strapi, Meilisearch, dan PostgreSQL. Sesudah tahap pengembangan usai, kriteria penerimaan dan nilai bisnis dari setiap item PBI digunakan sebagai ekspektasi pada evaluasi fungsionalitas. Hasilnya menunjukkan bahwa seluruh pengujian telah memenuhi ekspektasi dan arsitektur sistem serta seluruh fitur DMS Pegon telah berjalan sesuai dengan kebutuhan pengguna.
Pegon script is an adapted Arabic script used to write the Javanese, Sundanese, and Madurese languages. The manuscript collection of this script has been scattered throughout Indonesia and abroad, but unfortunately, there is no digital platform yet that can unite these valuable collections. One suitable platform to house complete manuscript metadata and support user contributions is a document management system (DMS). Therefore, this research aims to develop a DMS for Pegon manuscripts that can be used by collectors, traditional Muslim school students, and the general public. This research utilizes requirement gathering method to understand users’ needs for Pegon DMS. Interviews with potential users and benchmarking with other DMS applications were conducted to design the features and application interface. The evaluation of the feature design showed that the proposed features meet the needs of potential users. Based on the results of the requirement gathering process, product backlog items (PBI), technology selection, and Pegon DMS architecture were formulated. The development process was carried out in two phases, backend and frontend, using Kanban method. The implementation of the Pegon DMS utilized a containerized architecture within Docker, including Next.js, Strapi, Meilisearch, and PostgreSQL. After the development phase, acceptance criteria and business value for each PBI item were used as expectations in the functionality evaluation. The results showed that all tests met the expectations. Thus, the system architecture and all Pegon DMS features are in line with user requirements."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Siahaan, Edison Pardengganan
"Penelitian yang dilakukan pada tesis ini dimotivasi oleh adanya kebutuhan untuk dapat melakukan pengelolaan informasi pada dokumen suara khususnya berita berbahasa Indonesia. Informasi pada dokumen suara berita berbahasa Indonesia dapat diubah menjadi informasi berbentuk dokumen teks, dengan menggunakan perangkat lunak Automatic Speech Recognition (ASR). Pada penelitian ini perangkat ASR yang digunakan adalah perangkat ASR Sphinx 4.
Penggunaan perangkat Sphinx 4 ini didasari telah dilakukannya penelitian tentang transkripsi dokumen suara berbahasa Indonesia menggunakan perangkat ini. Hasil keluaran dari ASR berupa dokumen teks yang tidak memiliki batasan akhir dan tidak tersegmentasi secara jelas, tentu menyulitkan dalam pengolahan data teks tersebut. Dalam kerangka itu, maka penelitian yang dilakukan pada tesis ini ditujukan untuk mengetahui metode yang efektif dalam melakukan segmentasi hasil transkripsi berita suara berbahasa Indonesia. Metode yang akan diuji pada penelitian ini adalah metode TextTiling berbasis perbandingan blok dengan pembobotan TF-IDF-Mutual Information, TF-IDFMutual Information-Word Similarity, TF-IDF-Word Frequency, TF-IDF, Latent Semantic Analysis dan metode TextTiling berbasis Vocabulary Introduction. Segmentasi dilakukan untuk berita teks dan dokumen teks hasil transkripsi berita suara yang telahdikatagorikan menjadi 5 topik yaitu topik politik, sosial budaya, ekonomi, hukum dan olah raga. Hasil pengujian terhadap masing-masing teknik pembobotan menunjukkan bahwa metode segmentasi TextTiling dengan teknik pembobotan TF-IDF-Word Frequency merupakan metode segmentasi yang paling baik untuk dipakai dalam melakukan segmentasi hasil transkripsi dari perangkat pengenal suara (Automatic Speech Recognition). Pada penelitian ini telah dibuktikan bahwa teknik pembobotan TF-IDF-Word Frequency memiliki ketepatan segmentasi lebih tinggi baik pada dokumen teks hasil transkripsi (81,4%) ataupun pada dokumen berita teks (73,3%). Metode segmentasi yang dilakukan pada penelitian ini dapat terus dikembangkan menggunakan teknik-teknik lain dalam menunjang proses segmentasi hasil transkripsi berita berberbahasa Indonesia, seperti mempergunakan metode-metode optimalisasi dalam memperoleh urutan batas segmen yang optimal."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-804
UI - Tesis Membership Universitas Indonesia Library
Vanessa Deviani
"Simple-O merupakan sistem penilaian esai otomatis yang menerapkan algoritma Latent Semantic Analysis (LSA). Simple-O dalam penilaian hasilnya menggunakan metode pembobotan. Sebagai sistem penilaian esai otomatis, tentu saja Simple-O diharapkan agar hasil penilaiannya mirip dengan hasil penilaian secara manual (Human Raters). Metode pembobotan awal yang diterapkan pada Simple-O masih memiliki beberapa kekurangan, oleh karena itu pada skripsi kali ini akan diimplementasikan empat belas metode pembobotan (kombinasi tujuh pembobotan lokal dan dua pembobotan global) pada Simple-O dan hasilnya akan dilakukan analisa agar dapat ditentukan metode pembobotan yang mana yang paling cocok diterapkan di Simple-O. Metode pembobotan biner tanpa bobot lokal sejauh ini memiliki kemiripan yang paling tinggi dengan human raters dengan selisih perbedaan dengan human raters 9.255 poin.
Simple-O is an automated essay grading system that complies the Latent Semantic Analysis (LSA) algorithm. Simple-O uses word weighting method in the assessment of the results. As an automated essay grading system, the assessment system in Simple-O is supposedly similar with the manual assessment (human raters). The original Simple-O weighting method still have some flaws, therefore, on this thesis will be implemented fourteen word weighting methods (the combination of seven local weightings and two global weightings) and all of the results will be analyzed to determine which weighting method have the best result to be implemented in Simple-O. Binary weighting method so far have the highest similarity with the manual assessment with the differences by 9.255 point. "
Depok: Fakultas Teknik Universitas Indonesia, 2011
S797
UI - Skripsi Open Universitas Indonesia Library
Hill, Robert J.
London: Macmillan, 1982
R 428.1 HIL d
Buku Referensi Universitas Indonesia Library
Herry Dharmawan
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38475
UI - Skripsi Membership Universitas Indonesia Library