Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 152771 dokumen yang sesuai dengan query
cover
Lulu Djanatha
"Penelitian mengenai Analisis Hasil Pengukuran Kualitas Udara Dalam Ruangan Perusahaan XXX di Jakarta Tahun 2015, penelitian ini dilakukan terkait beberapa keluhan karyawan mengenai kualitas udara dalam ruangan kantor dan hasil dari pengukuran kualitas udara dalam kantor yang telah dilaksanakan pada September 2014.
Penelitian ini bertujuan untuk mengetahui apakah kualitas dalam ruangan perusahaan XXX sudah sesuai dengan standar dari pemerintah RI. Penelitian ini menggunakan metode analisis kualitatif deskriptif, pengambilan data dari penelitian ini dilaksanakan dengan menggunakan data hasil pengukuran kualitas udara dalam ruangan dan pelaksanaan wawancara dan observasi lapangan.
Hasil dari analisis kadar SO2, CO2, O2, Temperatur, Kelembaban, dan Laju Ventilasi pada beberapa area pengukuran tidak memenuhi standard. Saran yang penulis ajukan terkait menyesuaikan sistem udara (HVAC) dan pengontrolan kadar CO2 dalam ruangan. Serta melakukan penelitian lebih mendalam terkait kemungkinan gangguan kesehatan yang berhubungan dengan kualitas udara dalam ruangan.

Research on Analysis of Indoor Air Quality Measurement Result on Company XXX in Jakarta year 2015 was conducted in relation to some employee complaints regarding office indoor air quality and the results of air quality measurement in the office that have been held in September 2014.
This study aims to determine whether air quality indoor in Company XXX is comply with the standards of Indonesian government. This study uses descriptive qualitative analysis, retrieval of data from this study was conducted by using indoor air quality measurement data, interviews, and field observations.
Results of the analysis of the levels of SO2, CO2, O2, temperature, humidity, and ventilation rate in some measured areas did not meet the standard. Suggestions that the author submitted in association with this problem is to adjust the air conditioning system ( HVAC ) and to control the CO2 level in the building. Moreover, conduct more in-depth research related to the possibility of health problems caused by indoor air quality.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2015
S59011
UI - Skripsi Membership  Universitas Indonesia Library
cover
Davin Syauqi Adli Perdana Susanto
"Skripsi ini membahas tentang Kualitas Udara dalam Ruangan (KUDR) di area kerja kantor pusat PT. X, yang ditinjau berdasarkan hasil pengukuran parameter KUDR yang meliputi parameter kimia (NO2, CO, CO2, PM10, TVOC, formaldehida), fisika (suhu, kelembaban, laju pergerakan udara, pencahayaan), dan mikrobiologi (total bakteri dan total kapang), serta dengan mendeskripsikan faktor KUDR yang ada di area kerja (sumber kontaminan, jalur kontaminan, ventilasi dan distribusi udara, pengguna ruangan). Penelitian menggunakan metode mixed-method dengan pendekatan deskriptif observasional. Analisis data dilakukan dengan membandingkan hasil pengukuran dengan syarat KUDR menurut Permenaker 5/2018 dan Permenkes 48/2016, dan dengan menganalisis faktor KUDR yang berperan. Didapatkan rata-rata konsentrasi CO2, TVOC, dan laju pergerakan udara tidak sesuai dengan setidaknya salah satu syarat KUDR. Faktor KUDR yang teridentifikasi dan berpotensi menjadi penyebab kondisi tersebut adalah kondisi ventilasi dan aktivitas pengguna ruangan. Perlu dilakukan penelitian lebih lanjut untuk mengukur kondisi polusi di luar gedung, performa ventilasi, dan keluhan serta gejala Sick Building Syndrome pada pekerja.

The focus of this study is to give an overview of Indoor Air Quality (IAQ) at PT. X office area. This study were conducted by analyzing the IAQ parameters measurement results which consist of chemical parameters (NO2, CO, CO2, PM10, TVOC, formaldehyde), physical parameters (temperature, humidity, ambient air velocity; illumination), and microbiological parameters (total bacteria and total mold), also by describing IAQ factors present in the work area (contaminant source, pathway, ventilation and air distribution, and occupant). The research used mixed-method with a descriptive and observational approach. Data analysis was carried out by comparing the IAQ measurement results with IAQ requirements according to Permenaker 5/2018 and Permenkes 48/2016, and by analyzing the IAQ factors that potentially play a role. This study revealed that the average CO2, TVOC, and ambient air velocity do not meet IAQ requirements which were potentially caused by poor ventilation and occupant activities. Further study is needed by measuring outdoor pollution, investigating ventilation performance, and collecting occupants’ complaints and Sick Building Syndrome symptoms"
Depok: Fakultas Kesehatan Masyarakat, 2022
MK-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yasinta Dewi Pradina
"Polusi udara merupakan masalah di kota-kota besar, seperti di Jakarta dan Depok. Pencemaran ini disebabkan oleh : antropogenik , perindustrian, dan transportasi. Telah dilakukan pengambilan data-data parameter kualitas udara pada beberapa gedung kantor dan rumah tinggal seperti particulate matter, sulfur dioksida, dan nitrogen dioksida, baik untuk kualitas udara ambien maupun udara dalam ruang. Terdapat 3 kategori lokasi penelitian : tempat yang berpolusi, berpolusi rata-rata, dan lokasi yang berpolusi sedikit. Terdapat perbedaan hasil dari pengukuran saat musim kemarau dan musim penghujan. Saat musim kemarau rata-rata PM2.5 di Jakarta dan Depok adalah 54.6 μg/m3, PM10 adalah 54.94 μg/m3, SO2 adalah 0.4 ppm, dan NO2 adalah 0.5 ppm. Hasil pada musim kemarau berbeda dengan musim penghujan, rata-rata PM2.5 di Jakarta dan Depok adalah 45.3 μg/m3, PM10 adalah 40.3 μg/m3, SO2 adalah 0.25 ppm, dan NO2 adalah 0.8 ppm. Dapat dikategorikan untuk sebagian besar wilayah Jakarta dan Depok telah melewati ambang batas yang ditetapkan oleh Peraturan Menteri Kesehatan RI No. 1077/MenKes/Per/V/2011, untuk PM2.5 yaitu <35 μg/m3 dan untuk PM10 yaitu <70 μg/m3. Dengan metode pengumpulan data secara gravimetri, hasil penelitian menunjukkan bahwa konsentrasi debu atmospheric (PM2.5, PM10, SO2 dan NO2 di beberapa lokasi pengukuran masih berada di luar ambang batas yang ditetapkan oleh Peraturan Menteri kesehatan, tak heran jika di kota besar banyak orang yang memakai masker saat berada di luar ruangan. Penelitian juga membuktikan pengaruh alat penjernih udara dalam ruang (air purifier) terhadap penurunan jumlah debu atmospheric.

Air pollution is a problem in big cities, such as Jakarta and Depok. The pollution is caused by: anthropogenic, industrial, and transportation. Has been done taking the data of air quality parameters in several office buildings and residences such as particulate matter, sulfur dioxide, and nitrogen dioxide, both for the quality of ambient air and indoor air. There are three categories of research sites: a polluted, polluted average, and slightly polluted locations. The difference has proven in the results of the measurements during the dry season and the rainy season. During the dry season the average PM2.5 in Jakarta and Depok was 54.6 μg/m3, PM10 was 54.94 μg/m3, SO2 was 0.4 ppm, and NO2 was 0.5 ppm respectively. The results are different from the results with the rainy season, with average of PM2.5 in Jakarta and Depok was 45.3 μg/m3, PM10 was 40.3 μg/m3, SO2 was 0.25 ppm, and NO2 was 0.8 ppm respectively. The result to most areas of Jakarta and Depok has passed the threshold set by the Regulatory Ministry Manpower No. 1077/MenKes/Per/V/2011,which is <35 μg/m3 for PM2.5 and <70 μg/m3 for PM10. With the gravimetric data collection methods, the results showed that the concentration of atmospheric dust (PM2.5, PM10, SO2 and NO2 in several locations measurements are still outside the threshold set by the Minister of Health, no wonder if in big cities many people taking a mask when outside. The study also shows the effect of indoor air purifier (water purifier) ​​deteriorate the amount of atmospheric dust."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62460
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yudhiyono
"Udara segar merupakan kebutuhan utama bagi semua mahkluk hidup. Setiap mahkluk hidup memerlukan udara bersih 10-20 m3per hari untuk bernafas (EPA, 2012). Orang Amerika rata-rata menghabiskan 90% waktunya setiap hari untuk melakukan aktivitas di dalam ruangan. Dari fakta diatas, peneliti meyakini bahwa kualitas udara dalam ruangan memberi dampak yang lebih serius bagi kesehatan mahkluk hidup bila dibandingkan dengan kualitas udara di luar ruangan. Rendahnya kualitas udara dalam ruangan terutama disebabkan oleh aktivitas memasak dan pemanasan yang dilakukan di dalam ruangan. Faktor utama lain penyebab rendahnya kualitas udara dalam ruangan adalah asap rokok. Rendahnya kualitas udara dalam ruangan menyebabkan ketidaknyamanan dan berpengaruh pada kesehatan. Salah satu polutan yang berbahaya adalah particulate matter. ketika seseorang menghirup udara yang mengandung partikel tersebut, partikel tersebut akan berpenetrasi secara mendalam ke paru - paru. Efek jangka pendek dari menghirup udara yang berkualitas rendah adalah batuk, bersin, kelelahan, sakit kepala, gangguan pernafasan akut, dan efek jangka panjang dari menghirup udara yang berkualitas rendah adalah terkena penyakit paru-paru contohnya kanker paru -paru. Untuk mengurangi resiko kesehatan yang disebabkan oleh rendahnya kualitas udara, maka perlu dilakukan tindakan untuk meningkatkan kualitas udara tersebut. Sesuai dengan EPA An Introduction to Indoor Air Quality, terdapat 3 (tiga) cara dasar untuk meningkatkan kualitas udara dalam ruangan. Ketiga cara tersebut antara lain: manajemen sumber polutan atau menghilangkan sumber polutan individual atau mengurangi emisinya, meningkatkan ventilasi atau meningkatkan aliran udara ke dalam ruangan dan menggunakan pemurni udara atau pembersih udara dalam gedung. Tujuan utama dari penelitian ini adalah untuk mendapatkan cara yang paling efektif untuk mengurangi konsentrasi partikel dalam ruangan dalam rangka meningkatkan tingkat kualitas udara. Dari hasil penelitian dapat disimpulkan bahwa mesin pemurni udara memiliki dampak yang lebih efektif bila dibandingkan dengan ventilasi.

Fresh air is a primary need of every human being. Every Human need a regular fresh air 10-20 m3 each day for breath (EPA, 2012). US people spend their time approximately 90% in indoor for daily activities. From that fact above, scientist believe that the indoor air quality give more serious impact for human health than the outdoor air quality. Poor Indoor Air Quality primary caused by cooking and heating inside the building. Another major cause of poor indoor air quality is a cigarette smoke. Poor Indoor Air Quality will cause discomfort and affecting to health for the occupant. One harmful pollutant is particulate matter. When people breath air that contain this particles, this particles will penetrate deep into the lungs. Short- term effect inhale Poor Indoor Air Quality are coughing, sneezing, fatigue, headache, supper respiratory congestion, and long-term effect inhale poor Indoor Air Quality may cause lung diseases for example lungs cancer. to reduce the health risks caused by poor air quality, the air quality needs to be improved. According to EPA An Introduction to Indoor Air Quality (2013) there are three basic ways to Improve Indoor Air Quality. There are: Source management or eliminate individual source of pollutant or reduce their emissions, ventilation improvement or increasing outdoor air coming indoor and using air purifier or air cleaners in the building. The aim of this experiment is to find the most effective way to reduce particles concentration in the air in order to improve air quality level. From experiment result we can conclude that air purifier machine has more effective impact than ventilation one."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42625
UI - Tesis Membership  Universitas Indonesia Library
cover
Edi Margono
"DKI Jakarta menunjukkan sebanyak 46% dari kasus-kasus penyakit adalah penyakit gangguan pernapasan (ISPA 43%, iritasi rnata l,7% dan asma 1,3%) yang terkait dengan kualitas udara ambien yang tidak memenuhi baku umum dimana polusi udara di DKI Jakarta mengalami fluktuasi dengan beberapa parameter telah melewati nilai ambang batas seperti Ozon, N02 dan nilai ISPU menunjukan bahwa selama setahun hanya terhitung 22 hari udara Jakarta berkualitas baik, 95 hari dinyatakan tidak sehat, dan selebihnya 233 hari berkualitas sedang.
Studi ekologi ini bertujuan untuk mengidentifikasi kualitas udara ambien, kondisi meteorologi., dan kejadian ISPA, mempelajari kecenderungan perubahan kualitas udara ambien, kondisi meteorologi dan mempelajari hubungan antara kondisi meteorologi dengan kualitas udara ambien serta mempelajari hubungan antara kualitas udara ambien, kondisi meteorologi dengan kejadian ISPA.
Alat ukur yang digunakan untuk mengukur kualitas udara ambien menggunakan : FH6-I (5-ray absorbtfon), APSA-360 (Fluorescence UV), APOA-360 (Chelwninescence) dan NDR sedangkan untuk kondisi meteorologi adalah Tennometer; Hygromeierg Cup anenmmeter dan Global Star Pymnameter.
Populasi yang dilibatkan sebanyak 820 data rata-rata harian kualitas udara ambien, kondisi meteorologi dan ISPA dengan sampei sebesar 118 data rata-rata mingguan kualitas udara ambien, kondisi meteorologi dan ISPA.
Dalam kurun waklu 2006 - Maret 2008 diperolch konscntrasi rata-rata PMN; 65,9 pg/m3, so; 31,1 pg/mi, co 1,1 pg/ma, 0, 51,4 pg/m3, NO; 31,6 pg/ma dan niiai ISPU 72,3. Sedangkan rata-rata suhu 27,6°C, kelembaban 75,6 %, arah angin l54,5° , kecepatan angin 0,7 mls, radiasi matahari l12,0 W/m2 Serta rata~rata angka ISPA sebanyak 54 kejadian.
Hubungan kualitas udara ambien dcngan ISPA didapatkan bahwa SO; mempunyai korelasi positif tcrhadap angka ISPA. PM|0_ 03, ISPU mempunyai korelasi negatif terhadap angka ISPA. Hubungan kondisi meteorologi dengan ISPA didapatkan bahwa kelembaban, arah angin mempunyai korelasi positif terhadap angka ISPA. Suhu, radiasi matahari mempunyai korelasi negatif terhadap angka ISPA. Hubungan kondisi meteorologi dengan kualiaias udara ambien didapatkan bahwa suhu mempunyai korelasi poritifdengan PMN, 03, N01 dan ISPU. Kelembaban mempunyai korelasi negatif dengan PM|g, 03, N02 dan ISPU, arah angin mempunyai korelasi PM|0, CO, 03, NCQ, ISPU, kecepatan angin mempunyai korelasi negatif dengan PMN), CO. 01, N02, ISPU, radiasi matahari mempunyai konelasi negatif dengan CO, radiasi matahari mempunyai korelasi positif dengan ISPU.
Disimpulkan bahwa dalam kurun waklu 2006 - Mamet 2008 didapatkan pola angka ISPA mengikuti pola konsentrasi kualitas udara ambien dan kondisi meteorologi hal ini dibuktikan dengan adanya hubungan S0;, dan S0;*O3 Serta SO2*Suhu secara bersamaan mempunyai pengaruh yang besar terhadap ISPA dengan nilai koeiisicn korclasi sebesar 0,616 dan nilai koefisien determinasi Sebesar 0,379 (kuat). Dengan demikian SO;, SO1*O3, dan SO;*Suhu secara bersama-sama berpengaruh signifikan terhadap ISPA Namun konscmrasi CO, N02 , kecepatan angin tidak berhubungan denan kejadian ISPA di DKI Jakarta.

DKI Jakarta indicated 46% of disease cases were respirations problems (ISPA 43%, eye irritation of l,7% and asthma of 1,3%) related to ambient air quality which did not fulfill standard quality where air pollution in DKI Jakarta experienced fluctuation with a few parameter have passed boundary threshold value like Ozone, N02 and ISPA value indicated that Jakarta air had a good quality for 22 days each year, it was not health for 95 days, and it was a medium quality for 233 days.
This purpose of ecology study to identity an outdoor air quality, meteorology condition, and ISPA occurrence, studying a change tendency of outdoor air quality, meteorology condition and studying related between meteorology condition of outdoor air quality and also studying related between meteorology condition of outdoor air quality and ISPA occurrence.
Measurement instruments which are used for measuring outdoor air quality such as FI-I6-l (B-ray absorption), APSA-360 (Fluorescence UV), APOA-360 (Cheluminescence) and NIDR while the instruments which are used for measuring meteorology condition such as Thermometer, Hygrometer Cup Anemometer and Global Star Pyranometer.
Populations which are participated amount of 820 data on daily average of outdoor air quality, meteorology condition and ISPA by samples amount of ll8 data on weekly average of outdoor air quality, meteorology condition and ISPA. At period of 2006 - March 2008 obtained average concentrations were PM10 65,9p g/rn3,SO1 31,1p g/rn3, co up g/ms, 03 51,4u6§/ma, NO; 3l,6p g/m3 and ISPU value '?2,3. While temperature average was 27, C, dampness was 7S,6%, wind direction is l54,5°, wind velocity was 0,7 mls, sun radiation was 1l2,0 Wim! and also mean number of ISPA was amount 54 occurrences.
Related between outdoor air quality and ISPA indicated that S02 has a positive correlation of ISPA number. PMN, 03, ISPU have negative correlations of ISPA number. Related between meteorology condition and ISPA indicated that dampness, wind direction have positive correlations of ISPA number.
Temperature and sun radiation have negative correlations of ISPA number. Related between meteorology condition and outdoor air quality indicated that temperature has positive correlations of PM10, 03, NO; and ISPU. Dampness has negative correlation with PM1u, Og, NO; and ISPU, wind direction has correlation PMID, CO, 03, NO2, ISPU, wind velocity has negative correlation of PMN, CO, 03, N02, ISPU, sun radiation has negative correlation of cobalt, sun radiation has positive correlation of ISPU.
It was concluded that at period of 2006 - March 2008 indicated ISPA number pattern follow pattem concentration of outdoor air quality and this meteorology condition was proved by the existence of related between SO; SO1* SO; and SO2* temperature, at the same time, it has a big effect of [SPA by correlation ooeflicient value was 0,616 and determination coefficient value was 0,379 (strong). Therefore S0;, S0;=, and SO# temperature, at the same time, it has an effect of ISPA significantly. But concentration of CO, NOQ, wind velocity does not relate to ISPA occurrence in DKI Jakarta.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2008
T32911
UI - Tesis Open  Universitas Indonesia Library
cover
Jasmina Pertiwi
"DKI Jakarta merupakan salah satu daerah urban dengan kepadatan penduduk yang tinggi dan memiliki mobilitas kegiatan penduduk yang tinggi pula. Kegiatan penduduk seperti perindustrian, perkantoran, perumahan, dan transportasi akan menghasilkan pencemaran udara dimana pencemar tersebut akan dibuang ke udara bebas. Semakin besar peningkatan pencemaran udara akan semakin menurunkan kualitas udara ambien. Penelitian ini dilakukan penulis dengan observasi terhadap 4 lokasi sampling di wilayah DKI Jakarta dan Bukit Kototabang, Sumatera Barat sebagai Stasiun Global Atmosphere Watch (GAW) untuk Indonesia Bagian Barat. Analisis dilakukan terhadap sampel bulan April 2014-September 2014 untuk musim kemarau dan sampel bulan Oktober 2014-Maret 2015 untuk musim hujan. Konsentrasi SO2 saat musim kemarau lebih tinggi daripada saat musim hujan, dapat dilihat dari adanya penurunan konsentrasi saat musim hujan sebesar 5,126 μg/Nm3 untuk lokasi BMKG Jakarta; 5,023 μg/Nm3 untuk lokasi Monumen Nasional; 1,634 μg/Nm3 untuk lokasi Ancol; dan 6,502 μg/Nm3 untuk lokasi Glodok. Terjadi peningkatan konsentrasi SO2 di lokasi sampling GAW Bukit Kototabang sebesar 17,475 μg/Nm3 yang diakibatkan oleh adanya kebakaran hutan di Provinsi Riau. Konsentrasi NO2 saat musim kemarau lebih tinggi daripada saat musim hujan, dapat dilihat dari adanya penurunan konsentrasi saat musim hujan sebesar 0,583 μg/Nm3 untuk lokasi GAW Bukit Kototabang, 8,902 μg/Nm3 untuk lokasi BMKG Jakarta; 12,306 μg/Nm3 untuk lokasi Ancol; dan 2,0139μg/Nm3untuk lokasi Glodok. Konsentrasi SO2, NO2, dan logam Pb di udara saat musim hujan menurun karena adanya pengendapan atau pengumpulan polutan tersebut di awan dan terkondensasi menjadi bentuk cair / hujan (bentuk H2SO4 dan HNO3). Kualitas udara ambien terbaik di DKI Jakarta terdapat pada daerah Badan Meteorologi Klimatologi dan Geofisika (BMKG) dan terburuk pada Glodok, hal ini terkait kepada jumlah kendaraan bermotor yang melewati titik daerah sampling tersebut.

DKI Jakarta is one of the urban areas with highly crowded population and has a high mobility of daily activities. People activities in industrial, offices, housing, and using transportations will produce air pollution whose pollutants will be discharged into the air. The more the polution increases, the less the quality of ambient air will be. The research was conducted with the observation of 4 sampling locations in Jakarta and Bukit Kototabang, West Sumatera as the Global Atmosphere Watch (GAW) for Western Indonesia. Analyses were performed to samples of April 2014-September 2014 for the dry season, and samples of October 2014-Maret 2015 for the rainy season. SO2 gas concentrations in ambient air while the dry season is higher than the rainy season, can be seen from the presence of a decrease in the concentration of 5,126 μg/Nm3 for BMKG Jakarta; 5,023 μg/Nm3 for national monuments (Monas); 1,634 μg/Nm3 for Ancol; and 6,502 μg/Nm3 for Glodok. An increase in the concentration of SO2 in the sampling location GAW Bukit Kototabang of 17,475 μg/Nm3 activity caused by the forest fires in Riau Province. NO2 concentration while the dry season is higher than the rainy season, can be seen from the presence of a decrease in the concentration of 0,583 μg/Nm3 for GAW Bukit Kototabang, 8,902 μg/Nm3 for BMKG Jakarta; 12,306 μg/Nm3 for Ancol; and 2,0139 μg/Nm3 for Glodok. Concentrations of SO2, NO2, and metal Pb in the air when the rainy season decreases due to the deposition of the pollutants in the collection or the cloud and condensed into a liquid form / rain (HNO3 and H2SO4). The best ambient air quality in BMKG Jakarta and worst in Glodok, this corresponds to the number of motor vehicles passing through the area of the sampling point."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61316
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diinii Haniifah
"Kualitas udara dalam ruangan di rumah sakit harus menjadi perhatian khusus karena pasien salah satu sumber pencemar mikroorganisme patogen ke udara yang dapat memicu persebaran infeksi nosokomial, maka dilakukan penelitian terhadap kualitas udara di salah satu rumah sakit di Depok, yaitu Rumah Sakit Tugu Ibu, untuk mengetahui konsentrasi mikroorganisme di udara. Sampel udara diambil menggunakan EMS Bioaerosol Sampler Single Stage Sampler dengan debit aliran udara sebesar 28,3 L/menit. Bakteri di udara diambil selama dua menit pada media Tryptic Soy Agar dan diinkubasi pada temperatur 35-37oC selama 24 jam, sementara itu jamur pada media Malt Extract Agar selama dua menit dan diinkubasi pada temperatur 25-29oC selama 48-72 jam. Koloni yang tumbuh dihitung sebagai colony-forming Units CFU/m3 . Hasil penelitian menunjukkan hasil angka kuman, temperature dan kelembaban udara dalam ruangan pada rentang 1.385-2.930 CFU/m3, 25-28oC dan 72-91 yang mana melebihi batas baku mutu KepMenKes No. 1204/MENKES/SK/X/2004. Hasil pengukuran konsentrasi diuji secara statistik menggunakan uji non-parametrik untuk menunjukkan korelasi dengan jumlah orang dan hasil menunjukkan korelasi sig< 0,05 pada konsentrasi bakteri dengan jumlah orang dan tidak menunjukkan korelasi sig > 0,05 pada konsentrasi jamur dengan jumlah orang. Berdasarkan pengukuran dan perhitungan, sebagian besar Bilangan Reynold lebih besar dari 2.000 yang mengindikasikan bahwa jenis aliran udara didominasi oleh aliran turbulen. Jumlah pertukaran udara sebagian besar kurang dari 4 kali/jam sehingga tidak memenuhi standar yang ditetapkan oleh ASHRAE 1999 . Besarnya konsentrasi bakteri dan jamur dipengaruhi oleh temperature, kelembaban udara, kecepatan udara, jenis aliran udara, dan pertukaran udara per jam. Sementara itu, jumlah orang sangat berpengaruh terhadap konsentrasi bakteri namun tidak berpengaruh terhadap konsentrasi jamur.

Indoor air quality in hospital has to be considered because patients could be a source of pollutant and lead a nosocomial infection. Therefore, bioaerosol was measured in selected hospitals at city of Depok, which is Tugu Ibu Hospital. Air sampling was conducted by using EMS Bioaerosol Single Stage Sampler and worked at a flowrate of 28.3 l min. Airborne bacteria were collected for two min on Tryptic Soy Agar and then incubated at 35 37oC for 24 h, while fungi on Malt Extract Agar for two min and then incubated at 25 29oC for 48 72 h. The colonies were counted as colony forming units CFU m3 . The result showed that indoor air bacteria and fungi concentrations, air temperature and humidity with the range approximately between 1,385 2,930 CFU m3, 25 28oC and 72 91 , respectively. All the numbers have exceeded the quality of standards by Ministry of Health Decree No. 1204 MENKES SK X 2004. Spearman rank correlation showed strong correlation sig 0.05 between indoor air bacteria concentrations and number of visitors and no correlation sig 0.05 between indoor air fungi concentrations and number of visitors. Based on measurements and calculations, Reynold numbers were mostly over 2,000, which indicated the indoor airflow dominated by turbulent flow. Air change rates were mostly less than 4 times hour and did not meet quality standards by ASHRAE 1999 . Indoor air bacteria and fungi concentrations were influenced by temperature, air humidity and velocity, type of airflow and air change rates. Meanwhile, number of visitors affected the concentration of bacteria but did not on fungi."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67487
UI - Skripsi Membership  Universitas Indonesia Library
cover
; Anggi Sukma Dewi; Anggi Sukma Dewi
"Memiliki hewan pendamping atau companion animal mengalami tren kenaikan pada setiap tahunnya. Selaras dengan hal tersebut maka terdapat potensi adanya permintaan yang tinggi terkait fasilitas untuk menunjang kebutuhan hewan pendamping. Salah satu dari fasilitas penunjang kebutuhan hewan yaitu animal boarding atau tempat penitipan. Terdapat potensi ancaman polutan pada fasilitas penunjang kesehatan hewan seperti  patogen zoonosis, zat alergen, potensi meledaknya jumlah okupan sebagai penghasil polutan karbon dioksida (CO2), dan polutan dari gas amonia yang disebabkan oleh perilaku spraying dari companion animal. Di beberapa tempat, hampir setengah dari pekerja yang bekerja di fasilitas hewan telah dilaporkan mengalami gejala terkait alergi seperti rhinitis, konjungtivitis, asma, urtikaria kontak, dan jenis dermatitis alergi lainnya. Karena adanya potensi tercemarnya udara ruang dalam pada animal boarding dari polutan-polutan berbahaya, sistem penjernihan udara banyak diaplikasikan pada ruangan-ruangan yang rentan terhadap polutan di animal boarding. Dengan demikian, penelusuran mengenai mekanisme penjernihan udara pada animal boarding sangat menarik dilakukan.

Having a companion animal experiences an increasing trend every year. The number of pets worldwide has also been systematically increasing since 2010. Over the past 10 years, the pet population has grown. In line with this, it can be ensured that there is a high demand for facilities to support the well-being and health of companion animals. The presence of pollutants is one of the factors that affect Kualitas Udara Ruang Dalam. There is a potential threat of pollutants in animal  facilities such as zoonotic pathogens , allergenic substances, the potential for an increase in occupant numbers leading to carbon dioxide (CO2) emissions, and pollutants from ammonia gas caused by spraying behavior from companion animals. In some places, almost half of the workers in animal facilities have reported allergy-related symptoms such as rhinitis, conjunctivitis, asthma, contact urticaria, and other types of allergic dermatitis. Due to the potential air contamination in animal boarding from harmful pollutants, air purification systems are widely applied in rooms susceptible to pollutants in animal boarding. Therefore, exploring the mechanisms of air purification in animal boarding is highly interesting to be conducted."
[Depok;Depok;Depok;Depok, Depok]: [Fakultas Teknik Universitas Indonesia;Fakultas Teknik Universitas Indonesia;Fakultas Teknik Universitas Indonesia;Fakultas Teknik Universitas Indonesia, Fakultas Teknik Universitas Indonesia], 2023
S-pdf;S-pdf;S-pdf;S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harrison Alim
"Saat ini, kualitas udara ruangan menjadi salah satu ancaman kesehatan bagi masyarakat modern. Penelitian oleh Kleipes et.al, 2001 menujukan bahwa manusia modern menghabiskan hampir 90% waktunya dalam ruangan. Kualitas udara ruang dipengaruhi oleh berbagai macam polutan yang terdiri dari CO2, CO, VOC, Radon dan partikulat. .
Thermal Precipitator adalah salah satu alat yang dapat gunakan untuk membersihkan udara dan bekerja berdasarkan prinsip thermophoresis, yaitu gaya yang bekerja akibat adanya gradien temperatur. Untuk memahami karakteristik efek thermophoresis pada suatu thermal precipitator dengan ukuran partikel dan temperatur yang divariasikan, dilakukan suatu simulasi berdasarkan prinsip computational fluid dynamics, perpindahan kalor dan particle tracing. Variasi beda temperatur yang dilakukan adalah sebesar 30, 40, 50, 60, 70, 80 dengan ukuran partikel 0.05, 0.1, 0.25, 0.5, 0.75, 1,1.5, 2 dan 2.5 µm Simulasi tersebut dilakukan pada perangkat lunak COMSOL Multiphysics 5.4.
Hasil yang didapat berbentuk distribusi partikel, jarak tempuh partikel dan kebutuhan energi precipitator. Terdapat perbedaan yang besar yang diakibatkan perbedaan posisi plat panas dan dingin. Selain itu, pada rentang partikel 0.05-0.25 µm, thermophoresis menjadi driving force pergerakan partikel. Sedangkan efisiensi pada seluruh ukuran partikel sebesar 100% didapat pada beda temperatur diatas 50K untuk plat panas diletakan pada bagian atas dan 70K pada kasus plat panas diletakan pada bagian bawah. Sehingga, thermal precipitator berpotensi untuk menangkap partikel – partikel berukuran kecil untuk meningkatkan kualitas udara ruang. Kebutuhan energi precipitator adalah sebesar 150506.70 J/ m3 untuk beda temperatur 80 K dan 53044 J/m3 untuk beda temperatur 30 K. =
Indoor air quality has been raised as one of the most pressing health issues facing the urban society. According to Klepeis et.al, 2001 Modern human spends nearly 90% of their time in enclosed spaces or in commuting spaces. IAQ(Indoor Air Quality) is affected by various factors with pollutants ranging from CO2, CO, Radon and particulate matter.
One of the available technologies in air cleaning is thermal precipitators that works by utilizing thermophoresis effect. Thermophoresis effects is a force due a temperature gradient existing around a particle. To understand the characteristic and feasibility of the aforementioned technology for indoor air cleaning, a simulation based on the principle of computational fluid dynamics, heat transfer and particle tracing was done on COMSOL 5.4 Software. The parameters concerning the thermal precipitators were varied with temperature difference of 30, 40, 50, 60, 70, 80 K with particle diameter of 0.05, 0.1, 0.25, 0.5, 0.75, 1,1.5, 2 dan 2.5 µm. The simulation results in data regarding particle displacement, particle deposition count and heat transfer.
A large difference in precipitator performance was observed, due to heated plate position. Furthermore, Thermophoresis was observed as the driving force for particles ranging between 0.05 to 0.25 µm in size. An efficiency number of 100% across all particle sizes was achieved with a temperature difference of 50 K with the heated plate place above the colder plate while a temperature difference of 70K was required in order to achieve same effect when the heated plate is below the colder plate. Due to the high precipitation efficiency, themal precipitator possesses a high potential to collect fine particulate matter in order to improve indoor air quality. In addition, energy consumption was simulated, peaking at 150506 J/m3 of air cleaned with a temperature difference of 80K and 50344 J/m3 with a temperature difference of 30K"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwinanto
"ABSTRAK
Fungsi utama ventilasi, memastikan kondisi higienis dan nyaman. Tanpa ventilasi, bangunan tempat tinggal akan terkontaminasi bau yang tidak sedap dan kontaminan lain juga kondisi dalam ruangan akan menjadi panas. Peningkatan humiditas yang disebabkan dari sumber humiditas interior seperti penghuni, kegiatan mencuci pakaian, aktifitas dapur dan tanaman akan menyebabkan resiko humiditas (dinding berjamur). Tujuan dari sistem ventilasi mengeliminasi kontaminan yang berasal dari aktifitas penghuni juga yang berasal dari gedung hunian itu sendiri. Oleh karena itu pembaharuan udara pada bangunan tempat tinggal menggunakan unit Ventilasi Mekanik Kontrol yang terdiri atas lubang inlet udara utama (ruang tamu dan kamar tidur) juga lubang outlet udara yang terletak pada dapur dan kamar mandi) juga ekstraktor yang mengeluarkan udara kotor keluar rumah.
Informasi lain yang berkaitan dengan ventilasi dan kualitas udara interior akan digunakan dalam laporan ini.
Kami akan membandingkan model ventilasi mekanik insuflasi dan ventilasi mekanik aliran sedrhana hygro, untuk rumah hunian komplek Belon di Mériadec, Perancis. Kondisi yang aktual disana telah terpasang sistem ventilasi mekanik ventilasi mekanik aliran sederhana hygro, kemudian dalam masa periode pengukuran, dilakukan juga simulasi dengan bantuan CONTAM, untuk kondisi ventilasi mekanik aliran sederhana hygro. Dalam simulasi kita gunakan kondisi polutan yang homogen ; formaldehyde, yang disekenariokan dilepas pada salah satu ruangan ; kamar tidur 1, selanjutnya kita akan observasi kandungan formaldehyde tersebut pada bagian ruangan lainnya dalam rumah hunian. Langkah terakhir, membandingkan hasil simulasi antara kondisi di Perancis dengan kondisi di Depok, Indonesia, dengan menggunakan model simulasi yang sama.

ABSTRACT
The basic function of ventilation is to ensure hygiene and comforts satisfactory. Without ventilation, apartment buildings are exactly contaminated by odors and other contaminants, also in the dirty condition will be warmer. Increased humidity can be caused by the source of indoor humidity as occupants, laundry, kitchen and plants, and also will increase the risk of moisture (example, mold growth and other effects). The purpose of ventilation is to remove the contaminants being generated by both human activities and the building itself. In this respect then ventilation housing by Controlled Mechanical Ventilation based on a simple principle: it is to provide the flow of fresh air required to meet the needs of the building and tenants (health, safety, limiting condensation) while minimizing energy costs and respecting occupant comfort (noise, air velocity). The system is mainly composed of VMC vents air intakes main rooms (bedroom and living room), the exhaust vents in the service rooms (kitchens and bathrooms) and extractors that generate circulation air within the housing.
A state of the art concerning ventilation and indoor air quality is the subject of this report the internship.
We will compare the VMI model between VMC and simple flow hygro B, Belon House at Mériadec, France. There, in that house mechanical ventilation system installed by VMC Simple hygro flow, then during the activity measurement, we made the CONTAM simulation for the case under mechanical ventilation hygro single stream B. In the simulation, adding pollution homogeneous formaldehyde, in a part of the house; room 1, then we will observe the content of formaldehyde in this room to the parts of the house. The final step, comparing the simulation results between conditions in France with conditions in Depok, Indonesia, using the same simulation model."
Fakultas Teknik Universitas Indonesia, 2012
T32984
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>